【題目】設(shè)b、c表示兩條直線,α,β表示兩個(gè)平面,則下列命題是真命題的是( )
A.若bα,c∥α,則b∥c
B.若bα,b∥c,則c∥α
C.若c∥α,α⊥β,則c⊥β
D.若c∥α,c⊥β,則α⊥β
【答案】D
【解析】解:A選項(xiàng)不正確,因?yàn)榫面平行,面中的線與此線的關(guān)系是平行或者異面;
B選項(xiàng)不正確,因?yàn)榕c面中一線平行的直線與此面的關(guān)系可能是在面內(nèi)或者與面平行;
C選項(xiàng)不正確,因?yàn)閮擅娲怪保c其中一面平行的直線與另一面的關(guān)系可能是平行,在面內(nèi)也可能垂直;
D選項(xiàng)正確,因?yàn)榫與面平行,線垂直于另一面,可證得兩面垂直.
故選D
【考點(diǎn)精析】利用空間中直線與平面之間的位置關(guān)系對題目進(jìn)行判斷即可得到答案,需要熟知直線在平面內(nèi)—有無數(shù)個(gè)公共點(diǎn);直線與平面相交—有且只有一個(gè)公共點(diǎn);直線在平面平行—沒有公共點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知多項(xiàng)式函數(shù)f(x)=2x5﹣5x4﹣4x3+3x2﹣524,求當(dāng)x=5時(shí)的函數(shù)的值 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列條件中,能判斷兩個(gè)平面平行的是( )
A.一個(gè)平面內(nèi)的一條直線平行于另一個(gè)平面
B.一個(gè)平面內(nèi)的兩條直線平行于另一個(gè)平面
C.一個(gè)平面內(nèi)有無數(shù)條直線平行于另一個(gè)平面
D.一個(gè)平面內(nèi)的任何一條直線都平行于另一個(gè)平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是R上的奇函數(shù),f(1)=1,且對任意x∈R都有f(x+6)=f(x)+f(3)成立,則f(2015)+f(2016)的值為( )
A.﹣1
B.0
C.1
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合{x∈N*|x﹣3<2}的另一種表示法是( )
A.{0,1,2,3,4}
B.{1,2,3,4}
C.{0,1,2,3,4,5}
D.{1,2,3,4,5}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是公差為正數(shù)的等差數(shù)列,若a1+a2+a3=15,a1a2a3=80,則a11+a12+a13=( )
A.120
B.105
C.90
D.75
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是區(qū)間(﹣∞,+∞)上的偶函數(shù),且是[0,+∞)上的減函數(shù),則( )
A.f(﹣3)<f(﹣5)
B.f(﹣3)>f(﹣5)
C.f(﹣3)<f(5)
D.f(﹣3)=f(﹣5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】與圓x2+y2+4x﹣4y+7=0和x2+y2﹣4x﹣10y+13=0都相切的直線共有( )
A.1條
B.2條
C.3條
D.4條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題“若x>﹣3,則x>﹣6”以及它的逆命題、否命題、逆否命題中,真命題有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com