設(shè)奇函數(shù)上是增函數(shù),且,若函數(shù)對所有的都成立,則當時t的取值范圍是                  (   )
A.B.
C.D.
C

試題分析:由題意得:函數(shù)上的最大值為,則要使不等式
成立,只需,即,當時,,則由得:;當時,成立;當時,,則由得:,綜上。故選C。
點評:不等式的問題,常需要結(jié)合函數(shù)的單調(diào)性來求解。像本題解不等式,只要確定函數(shù)的最大值,然后讓大于或等于最大值即可。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某人2002年底花100萬元買了一套住房,其中首付30萬元,70萬元采用商業(yè)貸款.貸款的月利率為5‰,按復(fù)利計算,每月等額還貸一次,10年還清,并從貸款后的次月開始還貸.
(1)這個人每月應(yīng)還貸多少元?
(2)為了抑制高房價,國家出臺“國五條”,要求賣房時按照差額的20%繳稅.如果這個人現(xiàn)在將住房150萬元賣出,并且差額稅由賣房人承擔,問:賣房人將獲利約多少元?(參考數(shù)據(jù):(1+0.005)120≈1.8)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)求函數(shù)的最大值;
(2)若函數(shù)有相同極值點,
①求實數(shù)的值;
②若對于為自然對數(shù)的底數(shù)),不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),且
(1)求;
(2)判斷的奇偶性;
(3)判斷上的單調(diào)性,并證明。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).設(shè)關(guān)于x的不等式的解集為且方程的兩實根為.
(1)若,求的關(guān)系式;
(2)若,求的范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)若,求在圖象與軸交點處的切線方程;
(2)若在(1,2)上為單調(diào)函數(shù),求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)是定義在R上的奇函數(shù),且當時,不等式成立,若, ,則的大小關(guān)系是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則有(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

對于函數(shù) 
(1)探索函數(shù)的單調(diào)性;
(2)是否存在實數(shù),使函數(shù)為奇函數(shù)?

查看答案和解析>>

同步練習冊答案