【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=﹣an﹣( n1+2(n∈N*),數(shù)列{bn}滿足bn=2nan
(Ⅰ)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=log2 ,數(shù)列{ }的前n項(xiàng)和為Tn , 求滿足Tn (n∈N*)的n的最大值.

【答案】(Ⅰ)證明:∵Sn=﹣an﹣( n1+2(n∈N+),當(dāng)n≥2時(shí),Sn1=﹣an1﹣( n2+2(n∈N+),
∴an=Sn﹣Sn1=﹣an+an1+( n1 ,
化為2nan=2n1an1+1.
∵bn=2nan . ∴bn=bn1+1,即當(dāng)n≥2時(shí),bn﹣bn1=1.
令n=1,可得S1=﹣a1﹣1+2=a1 , 即a1=
又b1=2a1=1,∴數(shù)列{bn}是首項(xiàng)和公差均為1的等差數(shù)列.
于是bn=1+(n﹣1)1=n=2nan ,
∴an=
(Ⅱ)解:∵cn=log2 =n,
= ,
∴Tn=(1﹣ )+( )+…( )=1+ ,
由Tn ,得1+ ,即 + ,
∵f(n)= + 單調(diào)遞減,f(4)= ,f(5)= ,
∴n的最大值為4.
【解析】(Ⅰ)利用“當(dāng)n≥2時(shí),an=Sn﹣Sn1”及其等差數(shù)列的通項(xiàng)公式即可得出.(Ⅱ)先求通項(xiàng),再利用裂項(xiàng)法求和,進(jìn)而解不等式,即可求得正整數(shù)n的最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義函數(shù)F(a,b)= (a+b﹣|a﹣b|)(a,b∈R),設(shè)函數(shù)f(x)=﹣x2+2x+4,g(x)=x+2(x∈R)函數(shù)F(f(x),g(x))的最大值與零點(diǎn)之和為(
A.4
B.6
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的短軸長為2,離心率e=
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓交于不同的兩點(diǎn)A,B,與圓x2+y2= 相切于點(diǎn)M.
(i)證明:OA⊥OB(O為坐標(biāo)原點(diǎn));
(ii)設(shè)λ= ,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項(xiàng)和,且a10=19,S10=100;數(shù)列{bn}對任意n∈N* , 總有b1b2b3…bn1bn=an+2成立.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)記cn=(﹣1)n ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是以AB為直徑的圓,點(diǎn)C在圓上,在△ABC和△ACD中,∠ADC=90°,∠BAC=∠CAD,DC的延長線與AB的延長線交于點(diǎn)E.若EB=6,EC=6 ,則BC的長為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一塊地皮,其中 是直線段,曲線段是拋物線的一部分,且點(diǎn)是該拋物線的頂點(diǎn), 所在的直線是該拋物線的對稱軸.經(jīng)測量, km, km, .現(xiàn)要從這塊地皮中劃一個(gè)矩形來建造草坪,其中點(diǎn)在曲線段上,點(diǎn) 在直線段上,點(diǎn)在直線段上,設(shè)km,矩形草坪的面積為km2

(1)求,并寫出定義域;

(2)當(dāng)為多少時(shí),矩形草坪的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有4個(gè)人去參加某娛樂活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(Ⅰ)求這4個(gè)人中恰有2人去參加甲游戲的概率;
(Ⅱ)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)城校區(qū)與本部校區(qū)之間的駕車單程所需時(shí)間為,只與道路暢通狀況有關(guān),對其容量為500的樣本進(jìn)行統(tǒng)計(jì),結(jié)果如下:

(分鐘)

25

30

35

40

頻數(shù)(次)

100

150

200

50

以這500次駕車單程所需時(shí)間的頻率代替某人1次駕車單程所需時(shí)間的概率.

(1)求的分布列與;

(2)某天有3位教師獨(dú)自駕車從大學(xué)城校區(qū)返回本部校區(qū),記表示這3位教師中駕車所用時(shí)間少于的人數(shù),求的分布列與

(3)下周某天張老師將駕車從大學(xué)城校區(qū)出發(fā),前往本部校區(qū)做一個(gè)50分鐘的講座,結(jié)束后立即返回大學(xué)城校區(qū),求張老師從離開大學(xué)城校區(qū)到返回大學(xué)城校區(qū)共用時(shí)間不超過120分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是(
A.若ξ服從正態(tài)分布N(0,2),且P(ξ>2)=0.4,則P(0<ξ<2)=0.2
B.x=1是x2﹣x=0的必要不充分條件
C.直線ax+y+2=0與ax﹣y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”

查看答案和解析>>

同步練習(xí)冊答案