【題目】若函數(shù)有兩個極值點,其中,且,則方程的實根個數(shù)為

【答案】5

【解析】

由函數(shù)f(x)=﹣lnx+ax2+bx﹣a﹣2b有兩個極值點x1,x2,可得2ax2+bx﹣1=0有兩個不相等的正根,必有△=b2+8a>0.而方程2a(f(x))2+bf(x)﹣1=0的△1=△>0,可知此方程有兩解且f(x)=x1x2.再分別討論利用平移變換即可解出方程f(x)=x1f(x)=x2解的個數(shù).

∵函數(shù)f(x)=﹣lnx+ax2+bx﹣a﹣2b有兩個極值點x1,x2,

∴f′(x)=﹣+2ax+b=,

即為2ax2+bx﹣1=0有兩個不相等的正根,

∴△=b2+8a>0.解得x=

∵x1<x2,﹣,b>0,

∴x1=,x2=

而方程2a(f(x))2+bf(x)﹣1=0的△1=△>0,

∴此方程有兩解且f(x)=x1x2

即有0<x1<x2,:∵x1,x2>0x1x2=﹣>1

∴x2>1,∵f(1)=﹣b<0∴f(x1)<0,

f(x2)>0.

①根據(jù)f′(x)畫出f(x)的簡圖,

∵f(x2)=x2,由圖象可知方程f(x)=x2有兩解,方程f(x)=x1有三解.

綜上①②可知:方程f(x)=x1f(x)=x2共有5個實數(shù)解.

即關(guān)于x的方程2a(f(x))2+bf(x)﹣1=0的共有5不同實根.

故答案為:5

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的公差為2,前n項和為Sn , 且S1 , S2 , S4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=(﹣1)n1 ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足.

(I)求證:是等比數(shù)列;

(II)求證:不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】教材上一例問題如下:

一只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)如下表,試建立yx之間的回歸方程.

溫度 x/℃

21

23

25

27

29

32

35

產(chǎn)卵數(shù)y/

7

11

21

24

66

115

325

某同學利用圖形計算器研究它時,先作出散點圖(如圖所示),發(fā)現(xiàn)兩個變量不呈線性相關(guān)關(guān)系根據(jù)已有的函數(shù)知識,發(fā)現(xiàn)樣本點分布在某一條指數(shù)型曲線的附近是待定的參數(shù)),于是進行了如下的計算

根據(jù)以上計算結(jié)果,可以得到紅鈴蟲的產(chǎn)卵數(shù)y對溫度x的回歸方程為__________.(精確到0.0001) (提示:利用代換可轉(zhuǎn)化為線性關(guān)系

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知首項是1的兩個數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1﹣an+1bn+2bn+1bn=0.
(1)令cn= ,求數(shù)列{cn}的通項公式;
(2)若bn=3n1 , 求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分16分)甲方是一農(nóng)場,乙方是一工廠,由于乙方生產(chǎn)須占用甲方的資源,因此甲方每年向乙方索賠以彌補經(jīng)濟損失并獲得一定凈收入.乙方在不賠付甲方的情況下,乙方的年利潤(元)與年產(chǎn)量(噸)滿足函數(shù)關(guān)系.若乙方每生產(chǎn)一噸產(chǎn)品必須賠付甲方元(以下稱為賠付價格).

)將乙方的年利潤w (元)表示為年產(chǎn)量(噸)的函數(shù),并求出乙方獲得最大利潤的年產(chǎn)量;

)甲方每年受乙方生產(chǎn)影響的經(jīng)濟損失金額(元),在乙方按照獲得最大利潤的產(chǎn)量進行生產(chǎn)的前提下,甲方要在索賠中獲得最大凈收入,應向乙方要求的賠付價格是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex+ex , 其中e是自然對數(shù)的底數(shù).
(1)證明:f(x)是R上的偶函數(shù);
(2)若關(guān)于x的不等式mf(x)≤ex+m﹣1在(0,+∞)上恒成立,求實數(shù)m的取值范圍;
(3)已知正數(shù)a滿足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,試比較ea1與ae1的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱柱ABCD﹣A1B1C1D1的所有棱長都相等,AC∩BD=O,
A1C1∩B1D1=O1 , 四邊形ACC1A1和四邊形BDD1B1均為矩形.
(1)證明:O1O⊥底面ABCD;
(2)若∠CBA=60°,求二面角C1﹣OB1﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的函數(shù),如果存在常數(shù),對區(qū)間的任意劃分:,和式恒成立,則稱上的絕對差有界函數(shù),注:.

1)求證:函數(shù)上是絕對差有界函數(shù);

2)記集合存在常數(shù),對任意的,有成立.

求證:集合中的任意函數(shù)絕對差有界函數(shù);

3)求證:函數(shù)不是上的絕對差有界函數(shù)”.

查看答案和解析>>

同步練習冊答案