在△ABC中,a,b,c,分別為內角A,B,C所對的邊長,a=
3
,b=
2
,1+2cos(B+C)=0,求邊BC上的高.
分析:利用三角形的內角和180°,1+2cos(B+C)=0,求出A的正弦值,利用正弦定理,求出B的正弦值,然后求出C的正弦值,即可求出邊BC上的高.
解答:解:由1+2cos(B+C)=0,和A+B+C=180°
所以cosA=
1
2
,sinA=
3
2
,
由正弦定理得:
sinB=
bsinA
a
=
2
2

由b<a知B<A,所以B不是最大角,B<90°.從而cosB=
1-sin2B
=
2
2

由上述結果知
sinC=sin(A+B)=
2
2
(
3
2
+
1
2
)
,
設邊BC上的高為h則有
h=bsinC=
3
+1
2
點評:本題是基礎題,考查三角形的內角和,正弦定理的應用,同角三角函數(shù)的基本關系式的應用,考查計算能力,?碱}型.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A,B,C為三個內角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個單位;
②將①中的圖象的縱坐標不變,橫坐標縮短為原來的
1
2

③將②中的圖象的橫坐標不變,縱坐標伸長為原來的2倍.
(1)求f(x)的周期和對稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習冊答案