已知橢圓,為坐標原點,橢圓的右準線與軸的交點是
(1)點在已知橢圓上,動點滿足,求動點的軌跡方程;
(2)過橢圓右焦點的直線與橢圓交于點,求的面積的最大值

(1)(2)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設橢圓的左、右焦點分別為,,右頂點為A,上頂點為B.已知=.
(1)求橢圓的離心率;
(2)設P為橢圓上異于其頂點的一點,以線段PB為直徑的圓經過點,經過點的直線與該圓相切與點M,=.求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的兩焦點分別為,長軸長為6,
⑴求橢圓C的標準方程;
⑵已知過點(0,2)且斜率為1的直線交橢圓C于A 、B兩點,求線段AB的長度。.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

過拋物線C:上的點M分別向C的準線和x軸作垂線,兩條垂線及C的準線和x軸圍成邊長為4的正方形,點M在第一象限.
(1)求拋物線C的方程及點M的坐標;
(2)過點M作傾斜角互補的兩條直線分別與拋物線C交于A,B兩點,且直線AB過點(0,-1),求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

橢圓:的左頂點為,直線交橢圓兩點(下),動點和定點都在橢圓上.
(1)求橢圓方程及四邊形的面積.
(2)若四邊形為梯形,求點的坐標.
(3)若為實數(shù),,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點的坐標分別為,.直線,相交于點,且它們的斜率之積是,記動點的軌跡為曲線.
(1)求曲線的方程;
(2)設是曲線上的動點,直線分別交直線于點,線段的中點為,求直線與直線的斜率之積的取值范圍;
(3)在(2)的條件下,記直線的交點為,試探究點與曲線的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖為橢圓C:的左、右焦點,D,E是橢圓的兩個頂點,橢圓的離心率,的面積為.若點在橢圓C上,則點稱為點M的一個“橢圓”,直線與橢圓交于A,B兩點,A,B兩點的“橢圓”分別為P,Q.

(1)求橢圓C的標準方程;
(2)問是否存在過左焦點的直線,使得以PQ為直徑的圓經過坐標原點?若存在,求出該直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓過點,且離心率.
(1)求橢圓C的方程;
(2)已知過點的直線與該橢圓相交于A、B兩點,試問:在直線上是否存在點P,使得是正三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

 給定橢圓.稱圓心在原點O,半徑為的圓是橢圓C的“準圓”.若橢圓C的一個焦點為,其短軸上的一個端點到F的距離為
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.

查看答案和解析>>

同步練習冊答案