【題目】已知數(shù)列的首項(xiàng),其前n項(xiàng)和為,對(duì)于任意正整數(shù),都有.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列滿足.

①若,求證:數(shù)列是等差數(shù)列;

②若數(shù)列都是等比數(shù)列,求證:數(shù)列中至多存在三項(xiàng).

【答案】(1)(2)①見(jiàn)證明;②見(jiàn)證明;

【解析】

1)由可得,進(jìn)而得到數(shù)列的通項(xiàng)公式;

2)①由可得,利用待定系數(shù)法可得從而得證;②利用反證法證明即可.

(1)令,則由,得

因?yàn)?/span>,所以,

當(dāng)時(shí),,且當(dāng)n=1時(shí),此式也成立.

所以數(shù)列的通項(xiàng)公式為

(2)①【證法一】因?yàn)?/span>

,

所以.

,

所以,

所以,

所以,

所以,

所以數(shù)列是等差數(shù)列.

【證法二】

因?yàn)?/span>

所以

所以.

所以,

所以

,

兩式相減得,

所以,

所以,當(dāng)時(shí),,

,

所以,當(dāng)時(shí),,當(dāng)n=1時(shí),上式也成立,

所以,(iii)

所以數(shù)列是等差數(shù)列.

【證法三】

因?yàn)?/span>

所以,(i)

所以,(ii)

(i)-(ii)得,(iii)

所以,(iv)

(iii)-(iv)得,

所以.

.

所以

所以數(shù)列是等差數(shù)列

②不妨設(shè)數(shù)列超過(guò)三項(xiàng),令

由題意,則有

,

代入,整理得 (*),

若p=q=1,則,與條件矛盾;

,當(dāng)n=1時(shí),,①

當(dāng)n=2時(shí),,②

②÷①得,p=q,代入(*)得b=c,所以,與條件矛盾.

故這樣的數(shù)列至多存在三項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).① 若,則的極小值為___; ② 若存在使得方程無(wú)實(shí)根,則的取值范圍是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),橢圓C的左、右焦點(diǎn)分別為,,右頂點(diǎn)為A,上頂點(diǎn)為B,若,,成等比數(shù)列,橢圓C上的點(diǎn)到焦點(diǎn)的距離的最大值為

求橢圓C的標(biāo)準(zhǔn)方程;

過(guò)該橢圓的右焦點(diǎn)作傾角為的直線與橢圓交于M,N兩點(diǎn),求的內(nèi)切圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的方程為:

當(dāng)極點(diǎn)到直線的距離為時(shí),求直線的直角坐標(biāo)方程;

若直線與曲線有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,,D,E分別是的中點(diǎn).

(1)求證:DE∥平面

(2)若,求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)是定義在上的奇函數(shù),且.

1)確定的解析式;

2)判斷上的單調(diào)性,并用定義證明;

3)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校為調(diào)查學(xué)生喜歡應(yīng)用統(tǒng)計(jì)課程是否與性別有關(guān),隨機(jī)抽取了選修課程的55名學(xué)生,得到數(shù)據(jù)如下表:

喜歡統(tǒng)計(jì)課程

不喜歡統(tǒng)計(jì)課程

男生

20

5

女生

10

20

臨界值參考:

0.10

0.05

0.25

0.010

0.005

0.001

k

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

參照附表,得到的正確結(jié)論是(

A.在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為“喜歡應(yīng)用統(tǒng)計(jì)課程與性別有關(guān)”

B.在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為“喜歡應(yīng)用統(tǒng)計(jì)課程與性別無(wú)關(guān)”

C.以上的把握認(rèn)為“喜歡應(yīng)用統(tǒng)計(jì)課程與性別有關(guān)”

D.以上的把握認(rèn)為“喜歡應(yīng)用統(tǒng)計(jì)課程與性別無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年春節(jié)期間,某超市準(zhǔn)備舉辦一次有獎(jiǎng)促銷活動(dòng),若顧客一次消費(fèi)達(dá)到400元?jiǎng)t可參加一次抽獎(jiǎng)活動(dòng),超市設(shè)計(jì)了兩種抽獎(jiǎng)方案.

方案一:一個(gè)不透明的盒子中裝有30個(gè)質(zhì)地均勻且大小相同的小球,其中10個(gè)紅球,20個(gè)白球,攪拌均勻后,顧客從中隨機(jī)抽取一個(gè)球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.

方案二:一個(gè)不透明的盒子中裝有30個(gè)質(zhì)地均勻且大小相同的小球,其中10個(gè)紅球,20個(gè)白球,攪拌均勻后,顧客從中隨機(jī)抽取一個(gè)球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎(jiǎng),且顧客有放回地抽取3次.

(1)現(xiàn)有兩位顧客均獲得抽獎(jiǎng)機(jī)會(huì),且都按方案一抽獎(jiǎng),試求這兩位顧客均獲得180元返金券的概率;

(2)若某顧客獲得抽獎(jiǎng)機(jī)會(huì).

①試分別計(jì)算他選擇兩種抽獎(jiǎng)方案最終獲得返金券的數(shù)學(xué)期望;

②為了吸引顧客消費(fèi),讓顧客獲得更多金額的返金券,該超市應(yīng)選擇哪一種抽獎(jiǎng)方案進(jìn)行促銷活動(dòng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在空間直角坐標(biāo)系中,已知正四棱錐的高,點(diǎn)分別在軸和軸上,且,點(diǎn)是棱的中點(diǎn).

(1)求直線與平面所成角的正弦值;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案