【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)令g(x)=f(﹣x﹣ ),求g(x)的單調遞增區(qū)間.
【答案】
(1)解:由題意可知A=2,T=4( ﹣ )=π,ω=2,當x= 時取得最大值2,
所以 2=2sin(2x+φ),所以φ= ,
函數(shù)f(x)的解析式:f(x)=2sin(2x+ )
(2)解:g(x)=f(﹣x﹣ )=2sin(﹣2x﹣ )=﹣2sin(2x+ ),
令 +2kπ≤2x+ ≤ +2kπ,k∈Z,
解得 +kπ≤x≤ +kπ,k∈Z
∴函數(shù)的單調增區(qū)間是[ +kπ, +kπ],k∈Z.
【解析】(1)由題意求出A,T,利用周期公式求出ω,利用當x= 時取得最大
值2,求出φ,得到函數(shù)的解析式,即可.(2)先利用誘導公式得出y=﹣2sin(2x+ ).再利用正弦函數(shù)的單調性列出不等式解出.
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cosωx,sinωx), =(cosωx, cosωx),其中ω>0,設函數(shù)f(x)= .
(1)若函數(shù)f(x)的最小正周期是π,求函數(shù)f(x)的單調遞增區(qū)間;
(2)若函數(shù)f(x)的圖象的一個對稱中心的橫坐標為 ,求ω的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2015高考湖北】如圖,圓C與x軸相切于點T(1,0),與y軸正半軸交于兩點A,B(B在A的上方),且|AB|=2.
(1)圓C的標準方程為________.
(2)過點A任作一條直線與圓O:x2+y2=1相交于M,N兩點,下列三個結論:
①=;②-=2;
③+=2.
其中正確結論的序號是________(寫出所有正確結論的序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù), ().
(Ⅰ)求函數(shù)的單調增區(qū)間;
(Ⅱ)當時,記,是否存在整數(shù),使得關于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的前n項和為,已知(p、q為常數(shù), ),又, , .
(1)求p、q的值;
(2)求數(shù)列的通項公式;
(3)是否存在正整數(shù)m、n,使成立?若存在,求出所有符合條件的有序實數(shù)對;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設不等式x2≤5x﹣4的解集為A.
(1)求集合A;
(2)設關于x的不等式x2﹣(a+2)x+2a≤0的解集為M,若MA,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】Sn為數(shù)列{an}的前n項和,Sn=2an﹣2(n∈N+)
(1)求{an}的通項公式;
(2)若bn=3nan,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,甲船以每小時 海里的速度向正北方航行,乙船按固定方向勻速直線航行,當甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,此時兩船相距20海里,當甲船航行20分鐘到達A2處時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距 海里,問乙船每小時航行多少海里?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com