分析 (1)由AD∥BC和AD⊥平面ABE證明AE⊥BC,再由BF⊥平面ACE得AE⊥BF,根據(jù)線面垂直的判定定理證出AE⊥平面BCE,即證出AE⊥BE;
(2)在△ABE中過M點(diǎn)作MG∥AE交BE于G點(diǎn),在△BEC中過G點(diǎn)作GN∥BC交EC于N點(diǎn),連MN,證明平面MGE∥平面ADE,可得MN∥平面ADE,從而可得結(jié)論.
解答 證明:(1)∵BF⊥平面ACE,AE?平面ACE,
∴BF⊥AE,BF⊥CE,
∵EB=BC,∴F是CE的中點(diǎn),
又∵AD⊥平面ABE,AD?平面ABCD,
∴平面ABCD⊥平面ABE,
∵平面ABCD∩平面ABE=AB,BC⊥AB
∴BC⊥平面ABE,
從而BC⊥AE,且BC∩BF=B,
∴AE⊥平面BCE,BE?平面BCE,
∴AE⊥BE;
(2)在△ABE中過M點(diǎn)作MG∥AE交BE于G點(diǎn),
在△BEC中過G點(diǎn)作GN∥BC交EC于N點(diǎn),連MN,
∴CN=$\frac{1}{3}$CE.
∵M(jìn)G∥AE,MG?平面ADE,AE?平面ADE,
∴MG∥平面ADE.
同理,GN∥平面ADE,且MG與GN交于G點(diǎn),
∴平面MGN∥平面ADE.
又MN?平面MGN,
∴MN∥平面ADE.
故N點(diǎn)為線段CE上靠近C點(diǎn)的一個(gè)三等分點(diǎn).
點(diǎn)評(píng) 本題是關(guān)于線線、線面和面面垂直與平行的綜合題,利用垂直與平行的判定(性質(zhì))定理,實(shí)現(xiàn)線線、線面和面面的相互轉(zhuǎn)化,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${P}_{6}^{6}$ | B. | ${P}_{4}^{4}$•${P}_{3}^{3}$ | ||
C. | ${P}_{6}^{6}$-${P}_{4}^{4}$•${P}_{3}^{3}$ | D. | ${P}_{6}^{6}$-${P}_{3}^{3}•$${P}_{3}^{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $k<-\frac{1}{4}$時(shí),無解 | B. | $k=-\frac{1}{4}$時(shí),有2個(gè)解 | ||
C. | $-\frac{1}{4}<k≤0$時(shí),有4個(gè)解 | D. | k>0時(shí),有2個(gè)解 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com