已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)a1=2,Sn為其前n項(xiàng)和,若5S1,S3,3S2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,cn,記數(shù)列{cn}的前n項(xiàng)和Tn.若對(duì)?n∈N*,Tn≤k(n+4)恒成立,求實(shí)數(shù)k的取值范圍.
(1)an=2n(2)
(1)設(shè)數(shù)列{an}的公比為q,∵5S1,S3,3S2成等差數(shù)列,
∴2S3=5S1+3S2,即2(a1+a1q+a1q2)=5a1+3(a1+a1q),
化簡(jiǎn)得2q2-q-6=0,解得q=2或q=-.
因?yàn)閿?shù)列{an}的各項(xiàng)均為正數(shù),所以q=-不合題意,
所以數(shù)列{an}的通項(xiàng)公式為an=2n.
(2)由bn=log2an得bn=log22n=n,
則cn,
Tn=1-+…+=1-.
≤k(n+4),∴k≥.
∵n++5≥2+5=9,當(dāng)且僅當(dāng)n=,即n=2時(shí)等號(hào)成立,
,因此k≥,故實(shí)數(shù)k的取值范圍為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}和{bn}滿足:a1λan+1ann-4,bn=(-1)n(an-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).
(1)對(duì)任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且有a1=2,Sn=2an-2.
(1)求數(shù)列an的通項(xiàng)公式;
(2)若bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)等比數(shù)列{an}的各項(xiàng)均為正數(shù),公比為q,前n項(xiàng)和為Sn.若對(duì)?n∈N*,有S2n<3Sn,則q的取值范圍是(  )
A.(0,1]B.(0,2)C.[1,2)D.(0,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+1,數(shù)列{bn}是首項(xiàng)為1,公比為b的等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知{an}為等比數(shù)列,a2+a3=1,a3+a4=-2,則a5+a6+a7=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若等比數(shù)列滿足,則前項(xiàng)___     __.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等比數(shù)列{an}中,a3=6,前3項(xiàng)和S3=18,則公比q的值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等比數(shù)列{an}中,a5·a11=3,a3a13=4,則=(  ).
A.3B.C.3或D.-3或-

查看答案和解析>>

同步練習(xí)冊(cè)答案