若實(shí)數(shù)x,y滿足
x+y-1≥0
x≤2
y≤3
,則z=y-x的最小值是( 。
A、1B、5C、-3D、-5
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過平移即可求z的最大值.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=y-x得y=x+z,
平移直線y=x+z,
由圖象可知當(dāng)直線y=x+z經(jīng)過點(diǎn)C(2,-1)時(shí),直線y=x+z的截距最小,
此時(shí)z最小,
將C(2,-1),
代入目標(biāo)函數(shù)z=y-x,得z=-1-2=-3.
即z=y-x的最小值是-3.
故選C:
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用圖象平行求得目標(biāo)函數(shù)的最大值和最小值,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα+cosα=
1
4
,sinα•cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)進(jìn)入某商場(chǎng)的每一位顧客購買甲種商品的概率為0.5,購買乙種商品的概率為0.6,且購買甲種商品與購買乙種商品相互獨(dú)立,各顧客之間購買商品也是相互獨(dú)立的.
(1)求進(jìn)入商場(chǎng)的1位顧客至少購買甲、乙兩種商品中的一種的概率;
(2)記ξ表示進(jìn)入商場(chǎng)的3位顧客中至少購買甲、乙兩種商品中的一種的人數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2-10n,數(shù)列{bn}的每一項(xiàng)都有bn=|an|,數(shù)列{bn}的前n項(xiàng)和Tn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某畢業(yè)生參加人才招聘會(huì),分別向甲、乙、丙、丁四個(gè)公司投遞了個(gè)人簡(jiǎn)歷,假定該畢業(yè)生得到每個(gè)公司面試的概率均為p,且三個(gè)公司是否讓其面試是相互獨(dú)立的.記X為該畢業(yè)生得到面試的公司個(gè)數(shù).若P(X=0)=
1
81
,則隨機(jī)變量X的數(shù)學(xué)期望E(X)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某一隨機(jī)變量x的概率分布如下,且E(x)=5.9,則a的值為( 。
x 4 a 9
p 0.5 0.2 b
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2bx過(1,2)點(diǎn),若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2013的值為(  )
A、
2012
2011
B、
2010
2011
C、
2013
2012
D、
2013
2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若k的值使得過A(1,1)可以做兩條直線與圓x2+y2+kx-2y-
5
4
k=0相切,則k的取值范圍是( 。
A、k<0
B、k<-4或-1<k<0
C、k<-4
D、k<-4或k>-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x-y+3=0與圓(x+2)2+(y-2)2=2相交A,B兩點(diǎn),
(1)求線段AB的長(zhǎng)度;  
(2)圓上有多少個(gè)點(diǎn)到直線AB的距離等于1.

查看答案和解析>>

同步練習(xí)冊(cè)答案