命題甲:若x,y∈R,則|x|>1是x>1是充分而不必要條件;命題乙:函數(shù)y=
|x-1|-2
的定義域是(-∞,-1]∪[3,+∞),則(  )
A、“甲或乙”為假
B、“甲且乙”為真
C、甲真乙假
D、甲假乙真
考點(diǎn):復(fù)合命題的真假
專題:簡(jiǎn)易邏輯
分析:對(duì)于命題甲:|x|>1,解得x>1或x<-1.又由函數(shù)y=
|x-1|-2
的定義域?yàn)閤∈(-∞,-1]∪[3,+∞),命題乙為真命題,據(jù)此判斷即可.
解答: 解:對(duì)于命題甲:|x|>1,解得x>1或x<-1,則|x|>1是x>1是必要而不充分條件,命題甲為假命題;
又對(duì)于命題乙:由函數(shù)y=
|x-1|-2
的定義域?yàn)閨x-1|-2≥0,即|x-1|≥2,即x-1≥2或x-1≤-2.
故有x∈(-∞,-1]∪[3,+∞),命題乙為真命題;
則有“甲或乙”為真,A錯(cuò)誤,
“甲且乙”為假,B錯(cuò)誤,
甲假乙真,C錯(cuò)誤,D正確,
故選:D.
點(diǎn)評(píng):本題考查復(fù)合命題的真假,解題時(shí)要注意公式的靈活運(yùn)用,熟練掌握復(fù)合命題真假的判斷方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知ABCD為矩形,平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,M,N分別是AB,PC中點(diǎn).求證:MN⊥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算:a*b=
a,(ab>0)
b,(ab≤0)
,則函數(shù)f(x)=x*
1
x-1
的值域?yàn)?div id="gf4wgms" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在R上定義運(yùn)算?:x?y=x(2-y),已知f(x)=(x+1)?(x+1-a).
(1)若關(guān)于x的不等式f(x)≥0的解集是A={x|b≤x≤1},求實(shí)數(shù)a,b;
(2)對(duì)于任意的x,不等式f(x)≤1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在平面直角坐標(biāo)系中,直線l的參數(shù)方程是
x=1+t
y=
3
t
(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ2cos2θ-ρ2sin2θ+2ρsinθ-2=0,求直線l的極坐標(biāo)方程,若直線與曲線相交于A、B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:方程
x2
4-m
+
y2
m
=1
的圖象是焦點(diǎn)在x軸上的橢圓;命題q:“?x∈R,x2+2mx+1>0”;命題S:“?x∈R,mx2+2mx+2-m=0”.
(1)若命題S為真,求實(shí)數(shù)m的取值范圍;
(2)若p∨q為真,¬q為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=m,則
sin(α+3π)+cos(π+α)
sin(-α)-cos(π+α)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,AC=BC=
2
2
AB,四邊形ABED是矩形,AB=2,平面ABED⊥平面ABC,G、F分別是EC、BD的中點(diǎn),EC與平面ABC所成角的正弦值為
6
3

(Ⅰ)求證:GF∥底面ABC;
(Ⅱ)求BD與面EBC的所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3-3x+1,若f(x)存在唯一的零點(diǎn)x0,且x0>0,則a的取值范圍是( 。
A、(2,+∞)
B、(1,+∞)
C、(1,2)
D、(-∞,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案