【題目】已知橢圓C1: (a>b>0)的一個頂點與拋物線C2:x2=4y的焦點重合,F(xiàn)1、F2分別是橢圓C1的左、右焦點,C1的離心率e= ,過F2的直線l與橢圓C1交于M,N兩點,與拋物線C2交于P,Q兩點.
(1)求橢圓C1的方程;
(2)當(dāng)直線l的斜率k=﹣1時,求△PQF1的面積;
(3)在x軸上是否存在點A, 為常數(shù)?若存在,求出點A的坐標(biāo)和這個常數(shù);若不存在,請說明理由.
【答案】
(1)解:由拋物線C2:x2=4y的焦點為(1,0),可得b=1,
由e= = ,a2﹣c2=1,解得a= ,
故橢圓C1的方程為 +y2=1
(2)解:由題意可得直線l:y=1﹣x,
設(shè)P(x1,y1),Q(x2,y2),代入拋物線的方程x2=4y,可得
x2+4x﹣4=0,可得x1+x2=﹣4,x1x2=﹣4,
即有|PQ|= = =8,
由F1到直線l的距離為d= = ,
可得△PQF1的面積為 |PQ|d= ×8× =4
(3)解:設(shè)x軸上存在一點A(t,0),使得 為常數(shù).
①直線l的斜率存在,設(shè)直線l的方程為y=k(x﹣1),M(x3,y3),N(x4,y4),
把直線l的方程代入橢圓方程化簡可得(2k2+1)x2﹣4k2x+(2k2﹣2)=0,
∴x3+x4= ,x1x2= ,
∴y3y4=k2(x3﹣1)(x4﹣1)=k2[x3x4﹣(x3+x4)+1],
∴ =(x3﹣t)(x4﹣t)+y3y4=(k2+1)x3x4﹣(k2+t)(x3+x4)+k2+t2
= +t2,
∵ 為常數(shù),
∴ = ,
∴t= ,
此時 =﹣2+ =﹣ ;
②當(dāng)直線l與x軸垂直時,此時點M、N的坐標(biāo)分別為(1, ),(1,﹣ ),
當(dāng)t= 時,亦有 =﹣ .
綜上,在x軸上存在定點A( ,0),使得 為常數(shù),
且這個常數(shù)為﹣
【解析】(1)求得拋物線的焦點,可得b=1,再由橢圓的離心率公式和a,b,c的關(guān)系,可得a,進(jìn)而得到橢圓方程;(2)由題意可得直線l:y=1﹣x,設(shè)P(x1 , y1),Q(x2 , y2),代入拋物線的方程x2=4y,運(yùn)用韋達(dá)定理和弦長公式,以及點到直線的距離公式,運(yùn)用三角形的面積公式可得所求;(3)設(shè)x軸上存在一點A(t,0),使得 為常數(shù).①直線l的斜率存在,設(shè)直線l的方程為y=k(x﹣1),M(x3 , y3),N(x4 , y4),代入橢圓方程,運(yùn)用韋達(dá)定理和向量的數(shù)量積的坐標(biāo)表示,化簡整理,再由恒為常數(shù),可得t,可得常數(shù);②當(dāng)直線l與x軸垂直時,求得M,N的坐標(biāo),即可判斷存在A和常數(shù).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2||x|﹣1|.
(1)作出函數(shù)f(x)的大致圖象;
(2)指出函數(shù)f(x)的奇偶性、單調(diào)區(qū)間及零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=DC=2,點E為PC的中點,EF⊥PB,垂足為F點.
(1)求證:PA∥平面EDB;
(2)求證:PB⊥平面EFD;
(3)求異面直線BE與PA所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知0<k<4直線L:kx﹣2y﹣2k+8=0和直線M:2x+k2y﹣4k2﹣4=0與兩坐標(biāo)軸圍成一個四邊形,則這個四邊形面積最小值時k值為( )
A.2
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 (a>0,b>0)的兩條漸近線與拋物線D:y2=2px(p>0)的準(zhǔn)線分別交于A,B兩點,O為坐標(biāo)原點,雙曲線的離心率為 ,△ABO的面積為2 .
(1)求雙曲線C的漸近線方程;
(2)求p的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為[0,2],則函數(shù)f(x﹣3)的定義域為( )
A.[﹣3,﹣1]
B.[0,2]
C.[2,5]
D.[3,5]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幾何體的三視圖如右圖,其正視圖中的曲線部分為半個圓弧,則該幾何體的表面積為( )
A.19+πcm2
B.22+4πcm2
C.10+6 +4πcm2
D.13+6 +4πcm2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線y2=2px(p>0)的焦點,斜率為2 的直線交拋物線于A(x1 , y1)和B(x2 , y2)(x1<x2)兩點,且|AB|=9,
(1)求該拋物線的方程;
(2)O為坐標(biāo)原點,C為拋物線上一點,若 ,求λ的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com