【題目】已知拋物線C:=2px經(jīng)過(guò)點(diǎn)(1,2).過(guò)點(diǎn)Q(0,1)的直線l與拋物線C有兩個(gè)不同的交點(diǎn)A,B,且直線PA交y軸于M,直線PB交y軸于N.
(Ⅰ)求直線l的斜率的取值范圍;
(Ⅱ)設(shè)O為原點(diǎn),,,求證:為定值.
【答案】(1) 取值范圍是(-∞,-3)∪(-3,0)∪(0,1)
(2)證明過(guò)程見(jiàn)解析
【解析】分析:(1)先確定p,再設(shè)直線方程,與拋物線聯(lián)立,根據(jù)判別式大于零解得直線l的斜率的取值范圍,最后根據(jù)PA,PB與y軸相交,舍去k=3,(2)先設(shè)A(x1,y1),B(x2,y2),與拋物線聯(lián)立,根據(jù)韋達(dá)定理可得,.再由,得,.利用直線PA,PB的方程分別得點(diǎn)M,N的縱坐標(biāo),代入化簡(jiǎn)可得結(jié)論.
詳解:解:(Ⅰ)因?yàn)閽佄锞y2=2px經(jīng)過(guò)點(diǎn)P(1,2),
所以4=2p,解得p=2,所以拋物線的方程為y2=4x.
由題意可知直線l的斜率存在且不為0,
設(shè)直線l的方程為y=kx+1(k≠0).
由得.
依題意,解得k<0或0<k<1.
又PA,PB與y軸相交,故直線l不過(guò)點(diǎn)(1,-2).從而k≠-3.
所以直線l斜率的取值范圍是(-∞,-3)∪(-3,0)∪(0,1).
(Ⅱ)設(shè)A(x1,y1),B(x2,y2).
由(I)知,.
直線PA的方程為y–2=.
令x=0,得點(diǎn)M的縱坐標(biāo)為.
同理得點(diǎn)N的縱坐標(biāo)為.
由,得,.
所以.
所以為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)為所在的平面內(nèi),給出下列關(guān)系式:
①;
②;
③.
則點(diǎn)依次為的( )
A.內(nèi)心、重心、垂心B.重心、內(nèi)心、垂心C.重心、內(nèi)心、外心D.外心、垂心、重心
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行調(diào)查,通過(guò)抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖的的值;
(2)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說(shuō)明理由.
(3)估計(jì)居民月用水量的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線,和兩點(diǎn),給出如下結(jié)論其中真命題的序號(hào)是________
①當(dāng)變化時(shí),與分別經(jīng)過(guò)定點(diǎn)和;
②不論為何值時(shí),與都互相垂直;
③如果與交于點(diǎn),則的最大值是2;
④為直線上的點(diǎn),則的最小值是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:
①y=f(x)的表達(dá)式可改寫為y=4cos(2x﹣);
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關(guān)于點(diǎn)對(duì)稱;
④y=f(x)的圖象關(guān)于直線x=﹣對(duì)稱.
其中正確的命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形是正方形,平面,平面,,為棱的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠生產(chǎn)產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件需另投人成本萬(wàn)元.當(dāng)年產(chǎn)量不足80千件時(shí),(萬(wàn)元);當(dāng)年產(chǎn)量不小于80千件時(shí),萬(wàn)元,每千件產(chǎn)品的售價(jià)為50萬(wàn)元,該廠生產(chǎn)的產(chǎn)品能全部售完.
(1)寫出年利潤(rùn)萬(wàn)元關(guān)于千件的函數(shù)關(guān)系式;
(2)當(dāng)年產(chǎn)量為多少千件時(shí)該廠當(dāng)年的利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程
(1)若,是一枚骰子擲兩次所得到的點(diǎn)數(shù),求方程有兩正根的概率.
(2)若,,求方程沒(méi)有實(shí)根的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com