33(4)轉化為二進制的數(shù)為(  )
A、1101(2)
B、1111(2)
C、1011(2)
D、1001(2)
考點:整除的基本性質
專題:算法和程序框圖
分析:利用33(4)=3×41+3×40先轉化為“十進制”的數(shù)15(10).再利用“除2取余數(shù)法”即可得出.
解答: 解:∵33(4)=3×41+3×40=15(10)
如圖所示,
∴33(4)=15(10)=1111(2)
故選:B.
點評:本題考查了不同數(shù)進制之間的轉化方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知|
a
|=3,|
b
|=5,
a
b
=12,則向量
a
與向量
b
的夾角余弦為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
25
+
y2
16
=1上一點P到左焦點的距離為3,則P到右準線的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,不等式組
x≤a
x-y+4≥0
x+y≥0
(a為常數(shù))所表示的平面區(qū)域的面積是9,則實數(shù)a的值是( 。
A、1B、-5
C、1或-5D、-1或5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(
1
3
)
x
-log2x,若實數(shù)x0是函數(shù)f(x)的零點,且0<x<x0,則函數(shù)f(x)的值(  )
A、等于0B、恒為正
C、恒為負D、不大于0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線
y2
16
+
x2
9
=1的焦點坐標為( 。
A、(0,±
7
B、(±
7
,0)
C、(0,±5)
D、(±5,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知盒中裝有3只螺口與2只卡口燈泡,這些燈泡的外形與功率都相同且燈口向下放著,現(xiàn)需要一只卡口燈泡,電工師傅每次從中任取一只并不放回,則在他第1次抽到的是螺口燈泡的條件下,第2次抽到的是卡口燈泡的概率為( 。
A、
2
5
B、
3
5
C、
1
2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

兩球的體積之比為8:1,則它們的表面積之比為( 。
A、8:1
B、4:1
C、2
2
:1
D、2:1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲乙兩人玩猜數(shù)字游戲,先由甲心中想一個數(shù)字,記為a,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為b,其中a,b∈{1,2,3,4,5,6},若a=b或a=b-1,就稱甲乙“心有靈犀”現(xiàn)在任意找兩人玩這個游戲,則他們“心有靈犀”的概率為(  )
A、
7
36
B、
1
4
C、
11
36
D、
5
12

查看答案和解析>>

同步練習冊答案