求下列函數(shù)的值域.
(1)y=
x-2
+1(換元法)       (2)y=
3x+4
x-1
       (3)y=2x2-5x,x∈[2,3].
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用換元法設(shè)出
x-2
=t,轉(zhuǎn)化成一次函數(shù),進而根據(jù)單調(diào)性求得函數(shù)的值域.
(2)把函數(shù)解析式整理成3+
7
x-1
進而求得函數(shù)的值域.
(3)根據(jù)二次函數(shù)的單調(diào)性確定函數(shù)y的范圍.
解答: 解:(1)設(shè)t=
x-2
,
∵x≥2,則t≥0,
y=t+1(t≥0),故ymin=1,
即函數(shù)的值域為[1,+∞).
(2)y=
3x-3+7
x-1
=3+
7
x-1
,
7
x-1
≠0,
∴函數(shù)的值域為{y|y∈R,y≠3}.
(3)y=2x2-5x,函數(shù)圖象的對稱軸為x=
5
4
,開口向上,
函數(shù)在區(qū)間[2,3]單調(diào)遞增,
∴y∈[-2,3].
點評:本題主要考查了函數(shù)的值域的求法.綜合考查了學(xué)生對基礎(chǔ)知識的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2013年4月14日,CCTV財經(jīng)頻道報道了某地建筑市場存在違規(guī)使用未經(jīng)淡化海砂的現(xiàn)象.為了研究使用淡化海砂與混凝土耐久性是否達標有關(guān),某大學(xué)實驗室隨機抽取了60個樣本,得到了相關(guān)數(shù)據(jù)如下表:
混凝土耐久性達標混凝土耐久性不達標總計
使用淡化海砂25t30
使用未經(jīng)淡化海砂s1530
總計402060
(Ⅰ)根據(jù)表中數(shù)據(jù),求出s,t的值,利用獨立性檢驗的方法判斷,能否在犯錯誤的概率不超過1%的前提下,認為使用淡化海砂與混凝土耐久性是否達標有關(guān)?
(Ⅱ)若用分層抽樣的方法在使用淡化海砂的樣本中抽取了6個,現(xiàn)從這6個樣本中任取2個,則取出的2個樣本混凝土耐久性都達標的概率是多少?
參考數(shù)據(jù):
P(k2≥k)0.100.0500.0250.0100.001
k2.7063.8415.0246.63510.828
參考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+bx+4
(1)若f(x)為偶函數(shù),求b的值;
(2)若f(x)有零點,求b的取值范圍;
(3)求f(x)在區(qū)間[-1,1]上的最大值g(b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱錐S-ABCD中,底面ABCD為平行四邊形,側(cè)面SBC⊥底面ABCD,∠ABC=45°,AB=SA=SB=2.
(1)證明:SA⊥BC;
(2)求點B到平面SAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}前n項和為Sn,且a3=3,S15=120.
(1)求數(shù)列{an}的通項an;
(2)設(shè)bn=n•2an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD是正方形,PA⊥面ABCD,且PA=AB,E,F(xiàn)是側(cè)棱PD,PC的中點.
(1)求證EF∥平面PAB;
(2)求證平面PBD⊥平面PAC;
(3)求直線PC與底面ABCD所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下四個式子的值都等于同一個常數(shù).
(1)sin212°+sin248°+sin12°sin48°
(2)sin215°+sin245°+sin15°sin45°
(3)sin2(-12°)+sin272°+sin(-12°)sin72°
(4)sin2(-15°)+sin275°+sin(-15°)sin75°
(Ⅰ)試從上述四個式子中選擇一個,求出這個常數(shù)
(Ⅱ) 根據(jù)(Ⅰ)的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣成三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),x∈R,
(1)若f(-1)=0,且函數(shù)f(x)的值域為[0,+∞),求f(x)的表達式;
(2)在(1)的條件下,當x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設(shè)F(x)=
f(x)(x>0)
-f(x)(x<0)
,m>0,n<0,m+n>0,a>0且b=0,判斷F(m)+F(n)能否大于零?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知首項為1的數(shù)列{an},滿足an+1=
1
1+an
(n∈N*),則a3=
 

查看答案和解析>>

同步練習(xí)冊答案