y=sin(
1
2
x-
π
3
),x∈(
3
,2π)的最大值是(  )
A、
3
2
B、1
C、-
3
2
D、
1
2
考點(diǎn):正弦函數(shù)的圖象
專題:三角函數(shù)的求值
分析:由給出的x的范圍求出
1
2
x-
π
3
的范圍,根據(jù)三角函數(shù)的圖象性質(zhì)可求函數(shù)的最大值.
解答: 解:∵x∈(
3
,2π),
∴(
1
2
x-
π
3
)∈(
π
3
,
3
),
∴當(dāng)
1
2
x-
π
3
=
π
2
時(shí),函數(shù)有最大值,最大值為1,
故選:B
點(diǎn)評(píng):本題考查了正弦函數(shù)定義域和值域的求法,考查了正弦函數(shù)的單調(diào)性,要根據(jù)角的范圍求三角函數(shù)的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
m
+
y2
n
=1的離心率為3,有一個(gè)焦點(diǎn)與拋物線y=
1
12
x2的焦點(diǎn)相同,那么雙曲線的漸近線方程為( 。
A、2
2
x±y=0
B、x±2
2
y=0
C、x±2y=0
D、2x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知a與b是兩個(gè)不相等的正數(shù),n為正整數(shù),那么p=abn+anb和q=an-1+bn-1的大小關(guān)是( 。
A、p>q
B、p<q
C、無法確定,p、q的大小與n的取值有關(guān),而與a、b的取值無關(guān)
D、無法確定,p、q的大小與a、b的取值有關(guān),而與n的取值無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在[-1,1]的函數(shù)f(x)滿足下列兩個(gè)條件:①任意的x∈[-1,1],都有f(-x)=-f(x);②任意的m,n∈[0,1],當(dāng)m≠n,都有
f(m)-f(n)
m-n
<0,則不等式f(1-3x)<f(x-1)的解集是( 。
A、[0,
1
2
B、(
1
2
2
3
]
C、[-1,
1
2
D、[
2
3
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)=x|x|,則f(x)( 。
A、只有最大值
B、只有最小值
C、既有最大值,又有最小值
D、既無最大值,又無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,-2),
b
=(-1,3),則
a
+
b
=(  )
A、(-1,2)B、(0,1)
C、-1,2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(tanα,cosα)在第二象限,則α的終邊在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,x,y滿足約束條件
x≥2
x+y≤3
x-2y≤3
,若z=ax+y的最小值為1,則a=( 。
A、
1
3
B、
3
4
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,給出下列四個(gè)命題:
①若m⊥α,n∥α,則m⊥n    
②若m?α,n?α,m∥β,n∥β,則α∥β
③若m∥α,n∥α,則m∥n   
④若α⊥γ,β⊥γ,則α∥β
其中正確命題的序號(hào)是( 。
A、①B、②和③
C、③和④D、①和④

查看答案和解析>>

同步練習(xí)冊(cè)答案