5.已知tanα=4$\sqrt{3}$,cos(α+β)=-$\frac{11}{14}$,α,β均為銳角,則β的值是(  )
A.$\frac{π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

分析 由條件利用同角三角函數(shù)的基本關(guān)系求得 sinα、cosα、sin(α+β)的值,再利用兩角差的余弦公式求得cosβ=cos[(α+β)-α]的值,可得β的值.

解答 解:∵tanα=$\frac{sinα}{cosα}$=4$\sqrt{3}$,sin2α+cos2α=1,α為銳角,∴sinα=$\frac{4\sqrt{3}}{7}$,cosα=$\frac{1}{7}$.
∵cos(α+β)=-$\frac{11}{14}$,β均為銳角,sin(α+β)=$\sqrt{{1-cos}^{2}(α+β)}$=$\frac{5\sqrt{3}}{14}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-$\frac{11}{14}$×$\frac{1}{7}$+$\frac{5\sqrt{3}}{14}$×$\frac{4\sqrt{3}}{7}$=$\frac{1}{2}$,
故β=$\frac{π}{3}$,
故選:B.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列$\left\{{\frac{a_n}{{{p^{n-1}}}}}\right\}$的前n項和Sn=n2+2n(其中常數(shù)p>0).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)Tn為數(shù)列{an}的前n項和.
(i)求Tn的表達式;
(ii)若對任意n∈N*,都有(1-p)Tn+pan≥2pn恒成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某企業(yè)生產(chǎn)甲乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品需原料及每天原料的可用限額如表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為( 。
原料限額
A(噸)3212
B(噸)228
A.12萬元B.16萬元C.17萬元D.18萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知tanα=3,則$\frac{6sinα-2cosα}{5cosα+3sinα}$=$\frac{8}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知等差數(shù)列{an}中,a3=2,3a2+2a7=0,其前n項和為Sn
(Ⅰ)求等差數(shù)列{an}的通項公式;
(Ⅱ)求Sn,試問n為何值時Sn最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.“(1-2x)x>0”是“x$<\frac{1}{2}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.($\frac{-1+\sqrt{3}i}{2}$)2015=( 。
A.$\frac{-1+\sqrt{3}i}{2}$B.$\frac{-1-\sqrt{3}i}{2}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)i為虛數(shù)單位,則復(fù)數(shù)$\frac{2i-1}{i}$=( 。
A.2+iB.2-iC.-2-iD.-2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)等比數(shù)列{an}的前n項和為Sn,若a1+a2+a3+a4=1,a5+a6+a7+a8=2,Sn=15,則項數(shù)n為16.

查看答案和解析>>

同步練習(xí)冊答案