分析 由對(duì)稱(chēng)性和直線與圓的位置關(guān)系以及點(diǎn)到直線的距離公式可得k的方程,解方程可得.
解答 解:設(shè)直線l的斜率為k,則反射光線的斜率為-k且經(jīng)過(guò)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)(-3,-3),
故反射光線的方程為y+3=-k(x+3),即kx+y+3k+3=0,
∵圓x2+y2-4x-4y-1=0的圓心為(2,2),半徑為3,
|MN|=4,∴圓心(2,2)到直線kx+y+3k+3=0的距離d=$\sqrt{{3}^{2}-{2}^{2}}$=$\sqrt{5}$,
∴$\frac{|2k+2+3k+3|}{\sqrt{{k}^{2}+1}}$=$\sqrt{5}$,解得k=-2或k=-$\frac{1}{2}$,
當(dāng)k=-2時(shí),直線方程為y-3=-2(x+3),即2x+y+3=0;
當(dāng)k=-$\frac{1}{2}$時(shí),直線方程為y-3=-$\frac{1}{2}$(x+3),即x+2y-3=0;
故答案為:x+2y-3=0或2x+y+3=0
點(diǎn)評(píng) 本題考查直線的對(duì)稱(chēng)性和直線與圓的位置關(guān)系,涉及分類(lèi)討論的思想,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}-1}{4}$ | D. | $\frac{1-\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度 | B. | 向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | ||
C. | 向右平移$\frac{5π}{12}$個(gè)單位長(zhǎng)度 | D. | 向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,3) | B. | (-1,1) | C. | (-1,0)∪(1,3) | D. | (-2,-1)∪(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | C. | 既奇又偶函數(shù) | D. | 非奇非偶函數(shù) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com