分析 (1)根據(jù)已知中函數(shù)f(x)=1n$\frac{x+1}{x-1}$,得到f(-x)=-f(x),可得f(x)為奇函數(shù).
(2)結(jié)合(1)中函數(shù)的奇偶性和單調(diào)性及定義域,可解不等式.
解答 解:(1)∵f(x)=1n$\frac{x+1}{x-1}$.
∴f(-x)=ln$\frac{x-1}{x+1}$=1n($\frac{x+1}{x-1}$)-1=-1n$\frac{x+1}{x-1}$=-f(x),
則f(x)為奇函數(shù).
(2)∵f(x)為奇函數(shù),
∴不等式f(t)+f(t-6)<0.等價為f(t)<-f(t-6)=f(6-t).
∵函數(shù)在(1,4)上為增函數(shù),
∴$\left\{\begin{array}{l}1<t<4\\ 1<6-t<4\\ t<6-t\end{array}\right.$,即$\left\{\begin{array}{l}1<t<4\\ 2<t<5\\ t<3\end{array}\right.$,
解得:t∈(2,3)
點評 本題考查的知識點是函數(shù)的單調(diào)性和函數(shù)的奇偶性,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.002 | 4.04 | 4.3 | 5 | 4.8 | 7.57 | … |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<c<b | B. | a<b<c | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 90° | B. | 60° | C. | 45° | D. | 30 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com