15.探究函數(shù)$f(x)=x+\frac{4}{x},x∈(0,+∞)$的最小值,并確定取得最小值時(shí)x的值.列表如下:
x0.511.51.71.922.12.22.33457
y8.554.174.054.00544.0054.0024.044.354.87.57
請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
函數(shù)$f(x)=x+\frac{4}{x}(x>0)$在區(qū)間(0,2)上遞減;
函數(shù)$f(x)=x+\frac{4}{x}(x>0)$在區(qū)間[2,+∞)上遞增.
當(dāng)x=2時(shí),y最小=4
(1)用定義法證明:函數(shù)$f(x)=x+\frac{4}{x}(x>0)$在區(qū)間(0,2)遞減.
(2)思考:函數(shù)$f(x)=x+\frac{4}{x}(x<0)$時(shí),有最值嗎?是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

分析 運(yùn)用表格可得f(x)在區(qū)間[2,+∞)上遞增.當(dāng)x=2時(shí),y最小=4.
(1)運(yùn)用單調(diào)性的定義證明,注意作差、變形和定符號(hào)、下結(jié)論幾個(gè)步驟;
(2)可由f(x)為R上的奇函數(shù),可得x<0時(shí),有最大值,且為-4,此時(shí)x=-2.

解答 解:由表格可得函數(shù)f(x)=x+$\frac{4}{x}$(x>0)在區(qū)間(0,2)上遞減;
函數(shù)f(x)=x+$\frac{4}{x}$(x>0)在區(qū)間[2,+∞)上遞增.
當(dāng)x=2時(shí),y最小=4.
(1)用定義法證明:設(shè)0<x1<x2<2,f(x1)-f(x2)=x1+$\frac{4}{{x}_{1}}$-x2-$\frac{4}{{x}_{2}}$
=(x1-x2)(1-$\frac{4}{{x}_{1}{x}_{2}}$),
由0<x1<x2<2,可得x1-x2<0,0<x1x2<4,1-$\frac{4}{{x}_{1}{x}_{2}}$<0,
即有f(x1)-f(x2)>0,即f(x1)<f(x2),
則函數(shù)$f(x)=x+\frac{4}{x}(x>0)$ 在區(qū)間(0,2)遞減;
(2)函數(shù)$f(x)=x+\frac{4}{x}(x<0)$ 時(shí),有最大值-4;此時(shí)x=-2.
故答案為:[2,+∞),2,4.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性的判斷和運(yùn)用,考查函數(shù)的最值的求法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某工程由A、B、C、D四道工序組成,完成他們需用時(shí)間依次為2,5,x,4天,四道工序的先后順序及相互關(guān)系是:A、B可以同時(shí)開工;A完成后,C可以開工;B、C完成后,D可以開工,根據(jù)題意畫出工序圖.若該工程總時(shí)數(shù)為9天,則完成工序C需要的天數(shù)x最大是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求極值$\underset{lim}{x→0}$$\frac{{e}^{x}-{e}^{-x}}{arcsin2x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a>0,b>0,則下列不等式中不恒成立的是( 。
A.$(a+b)(\frac{1}{a}+\frac{1})≥4$B.a3+b3≥2ab2C.$\sqrt{|a-b|}≥\sqrt{a}-\sqrt$D.a2+b2+2≥2a+2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.對(duì)于集合A={x|0≤x≤2},B={y|0≤y≤3},則由下列圖形給出的對(duì)應(yīng)f中,能構(gòu)成從A到B的函數(shù)的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知定義在(-∞,-1)∪(1,+∞)上的函數(shù)f(x)=1n$\frac{x+1}{x-1}$.
(1)試判斷f(x)的奇偶性;
(2)若函數(shù)在(1,4)上為增函數(shù),解關(guān)于t的不等式f(t)+f(t-6)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某程序框圖如圖所示,該程序運(yùn)行后輸出的S的值是30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知$sin(x+\frac{π}{3})=\frac{1}{3},x∈(0,π)$,則$sin(\frac{π}{6}-x)$=-$\frac{2\sqrt{2}}{3}$;$cos(2x+\frac{π}{3})$=$\frac{7+4\sqrt{6}}{18}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.吉安市教育局組織中學(xué)生籃球比賽,共有實(shí)力相當(dāng)?shù)腁,B,C,D四支代表隊(duì)參加比賽,比賽規(guī)則如下:第一輪:抽簽分成兩組,每組兩隊(duì)進(jìn)行一場比賽,勝者進(jìn)入第二輪;第二輪:兩隊(duì)進(jìn)行決賽,勝者得冠軍.
(1)求比賽中A、B兩隊(duì)在第一輪相遇的概率;
(2)求整個(gè)比賽中A、B兩隊(duì)沒有相遇的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案