【題目】甲、乙兩位“準笑星”在“信陽笑星”選拔賽中,5位評委給出的評分情況如圖所示,記甲、乙兩人的平均得分分別為 、 ,記甲、乙兩人得分的標準差分別為s1、s2 , 則下列判斷正確的是( )
A.< ,s1<s2
B.< ,s1>s2
C.> ,s1<s2
D.> ,s1>s2
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cos2x, sinx), =(1,cosx),函數(shù)f(x)=2 +m,且當x∈[0, ]時,f(x)的最小值為2.
(1)求m的值,并求f(x)圖象的對稱軸方程;
(2)設函數(shù)g(x)=[f(x)2]﹣f(x),x∈[0, ],求g(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2asinωxcosωx+2 cos2ωx﹣ +1(a>0,ω>0)的最大值為3,最小正周期為π.
(1)求函數(shù)f(x)的單調遞增區(qū)間.
(2)若f(θ)= ,求sin(4θ+ )的值.
(3)若存在區(qū)間[a,b](a,b∈R,且a<b)使得y=f(x)在[a,b]上至少含有6個零點,在滿足上述條件的[a,b]中,求b﹣a的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分14分)
如圖,在多面體中,四邊形是菱形,相交于點,,,平面平面,,點為的中點.
(1)求證:直線平面;
(2)求證:直線平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是我國南宋時期的數(shù)學家秦九韶提出的一種多項式f(x)=anxn+an﹣1xn﹣1+…+a1x+a0的求值問題的算法.現(xiàn)按照這個程序執(zhí)行函數(shù)f (x)=3x4﹣2x3﹣6x﹣17的計算,若輸入的值x0=2,則輸出的v的值是( )
A.0
B.2
C.3
D.﹣3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市政府為了實施政府績效管理、創(chuàng)新政府公共服務模式、提高公共服務效率.實施了“政府承諾,等你打分”民意調查活動,通過問卷調查了學生、在職人員、退休人員共250人,統(tǒng)計結果表不幸被污損,如表:
學生 | 在職人員 | 退休人員 | |
滿意 | 78 | ||
不滿意 | 5 | 12 |
若在所調查人員中隨機抽取1人,恰好抽到學生的概率為0.32.
(1)求滿意學生的人數(shù);
(2)現(xiàn)用分層抽樣的方法在所調查的人員中抽取25人,則在職人員應抽取多少人?
(3)若滿意的在職人員為77,則從問卷調查中填寫不滿意的“學生和在職人員”中選出2人進行訪談,求這2人中包含了兩類人員的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某商業(yè)中心O有通往正東方向和北偏東30方向的兩條街道,某公園P位于商業(yè)中心北偏東角(),且與商業(yè)中心O的距離為公里處,現(xiàn)要經過公園P修一條直路分別與兩條街道交匯于A,B兩處。
(1)當AB沿正北方向時,試求商業(yè)中心到A,B兩處的距離和;
(2)若要使商業(yè)中心O到A,B兩處的距離和最短,請確定A,B的最佳位置。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A、B、C對邊分別為a、b、c,sinA+sinB=2sinC,a=2b.
(1)證明:△ABC為鈍角三角形;
(2)若S△ABC= ,求c.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某租賃公司擁有汽車100輛.當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.
(1)當每輛車的月租金定為3600元時,能租出多少輛車?
(2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com