【題目】已知函數(shù)在點處的切線斜率為負值.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若有兩個極值點,,求證:.
【答案】(1)見解析(2)見解析
【解析】分析:(Ⅰ)由,得,分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(Ⅱ)由(Ⅰ)知,當(dāng)時,有兩個極值點,,且,.
可得,設(shè),則,可得在區(qū)間上單調(diào)遞減,所以,.
詳解:(Ⅰ)的定義域為,
,
由題知,,所以.
因為,所以只需研究的符號.
①當(dāng),即時,
,為的單減區(qū)間;
②當(dāng),即時,
令,解得,,
所以,,,的變化情況如下表:
- | + | - | |||
極小值 | 極大值 |
所以,的單調(diào)遞減區(qū)間為,,
單調(diào)遞增區(qū)間為.
(Ⅱ)由(Ⅰ)知,當(dāng)時,有兩個極值點,,
且,.
所以,
.
設(shè),則,
因為,所以,
所以,在區(qū)間上單調(diào)遞減.
所以,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+c(a>0),且f(1).
(1)求證:函數(shù)f(x)有兩個不同的零點;
(2)設(shè)x1,x2是函數(shù)f(x)的兩個不同的零點,求|x1﹣x2|的取值范圍;
(3)求證:函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l1:kx-y+4=0與直線l2:x+ky-3=0相交于點P,則當(dāng)實數(shù)k變化時,點P到直線4x-3y+10=0的距離的最大值為( 。
A.2B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為實常數(shù),函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個不同的零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若無窮數(shù)列滿足:是正實數(shù),當(dāng)時,,則稱是“-數(shù)列”.已知數(shù)列是“-數(shù)列”.
(Ⅰ)若,寫出的所有可能值;
(Ⅱ)證明:是等差數(shù)列當(dāng)且僅當(dāng)單調(diào)遞減;
(Ⅲ)若存在正整數(shù),對任意正整數(shù),都有,證明:是數(shù)列的最大項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,左、右焦點分別為,且與拋物線的焦點重合.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過的直線交橢圓于兩點,過的直線交橢圓于兩點,且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求曲線在點處的切線方程;
(2)若函數(shù),求的單調(diào)區(qū)間;并證明:當(dāng)時,;
(3)證明:當(dāng)時,函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com