【題目】已知函數(shù),

1)求曲線在點處的切線方程;

2)若函數(shù),求的單調區(qū)間;并證明:當時,;

3)證明:當時,函數(shù)有最小值,設最小值為,求函數(shù)的值域.

【答案】1;(2的單調遞增區(qū)間為;證明見解析;(3)證明見解析;.

【解析】

1)由導數(shù)的幾何意義可得切線斜率為1,利用點斜式即可得解;

2)由題意,求導后可得,即可得的單調區(qū)間;由時,,即可得證;

3)求出函數(shù)的導數(shù),令,由(2)知的單調性,可得存在唯一實數(shù)使得,則,令,求導后即可得解.

1,,

故所求直線方程為;

2)由題意

,

的單調遞增區(qū)間為,;

時,,

可得,

,得證.

3)由題意,

,

由(2)知,上單調遞增,

,,存在唯一實數(shù)使得,

時,,,函數(shù)單調遞減;

時,,,函數(shù)單調遞增;

上有最小值,

,

,

,函數(shù)上單調遞增,

,

函數(shù)的值域為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】袋中共有8個乒乓球,其中有5個白球,3個紅球,這些乒乓球除顏色外完全相同.從袋中隨機取出一球,如果取出紅球,則把它放回袋中;如果取出白球,則該白球不再放回,并且另補一個紅球放入袋中,重復上述過程次后,袋中紅球的個數(shù)記為.

(I)求隨機變量的概率分布及數(shù)學期望;

(Ⅱ)求隨機變量的數(shù)學期望關于的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在點處的切線斜率為負值.

(Ⅰ)討論的單調性;

(Ⅱ)若有兩個極值點,,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在四棱錐中,平面,是邊長為2的等邊三角形,,的中點.

1)求證:

2)若直線與平面所成角的正切值為2,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)R).

1)求函數(shù)R上的最小值;

2)若不等式上恒成立,求的取值范圍;

3)若方程上有四個不相等的實數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的個數(shù)為(

①兩個有共同始點且相等的向量,其終點可能不同;

②若非零向量共線,則、、四點共線;

③若非零向量共線,則;

④四邊形是平行四邊形,則必有

,則、方向相同或相反.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為數(shù)列的前項和為滿足,,,且.若存在,使得成立,則實數(shù)的最小值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調區(qū)間;

(2)若關于的方程有實數(shù)解,求實數(shù)的取值范圍;

(3)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩個定點, 動點滿足,設動點的軌跡為曲線,直線.

1)求曲線的軌跡方程;

2)若與曲線交于不同的、兩點,且 (為坐標原點),求直線的斜率;

3)若是直線上的動點,過作曲線的兩條切線,切點為,探究:直線是否過定點,若存在定點請寫出坐標,若不存在則說明理由.

查看答案和解析>>

同步練習冊答案