2.函數(shù)f(x)=$sin({2x+\frac{π}{6}})$的最小正周期和振幅分別是(  )
A.π,1B.π,2C.2π,1D.2π,2

分析 根據(jù)函數(shù)y=Asin(ωx+φ)的周期為$\frac{2π}{ω}$,振幅為A,得出結(jié)論.

解答 解:函數(shù)f(x)=$sin({2x+\frac{π}{6}})$的最小正周期為$\frac{2π}{2}$=π,振幅是1,
故選:A.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的周期和振幅,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.計算($lg\frac{1}{5}-lg2$)÷100${\;}^{-\frac{1}{2}}$+${({\frac{1}{3}})^{{{log}_3}\frac{1}{10}}}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.連鎖經(jīng)營公司所屬5個零售店某月的銷售額利潤資料如表:
商品名稱ABCDE
銷售額x/千萬元35679
利潤額y/百萬元23345
(1)畫出銷售額和利潤額的散點圖
(2)若銷售額和利潤額具有相關(guān)關(guān)系,試計算利潤額y對銷售額x的回歸直線方程.
(3)估計要達(dá)到1000萬元的利潤額,銷售額約為多少萬元.
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖直三棱柱ABC-A′B′C′的側(cè)棱長為3,AB⊥BC,且AB=BC=3,點E,F(xiàn)分別是棱AB,BC上的動點,且AE=BF.
(1)求證:無論E在何處,總有CB′⊥C′E;
(2)當(dāng)三棱錐B-EB′F的體積取得最大值時,求AE的長度.
(3)在(2)的條件下,求異面直線A′F與AC所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在直角坐標(biāo)系中,已知M(2,1)和直線L:x-y=0,試在直線L上找一點P,在X軸上找一點Q,使三角形MPQ的周長最小,最小值為$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.計算$\frac{\sqrt{x}•\root{3}{{x}^{4}}}{x•\root{6}{x}}$的值為( 。
A.${x}^{\frac{2}{3}}$B.${x}^{-\frac{2}{3}}$C.${x}^{\frac{1}{3}}$D.${x}^{-\frac{1}{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$,則g(g($\frac{1}{3}$))=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知a=1,b=2,cosC=$\frac{1}{4}$
(1)求△ABC的周長;
(2)求sin(A-C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$-($\frac{49}{9}$)0.5+(0.2)-2×$\frac{2}{25}$-(0.081)0
(2)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$.

查看答案和解析>>

同步練習(xí)冊答案