【題目】已知函數(shù)f(x)=ax3﹣x2+4x+3,若在區(qū)間[﹣2,1]上,f(x)≥0恒成立,則a的取值范圍是(
A.[﹣6,﹣2]
B.
C.[﹣5,﹣3]
D.[﹣4,﹣3]

【答案】A
【解析】解:解:當x=0時,不等式ax3﹣x2+4x+3≥0對任意a∈R恒成立; 當0<x≤1時,ax3﹣x2+4x+3≥0可化為a≥ ,
令f(x)= ,則f′(x)=﹣ + =﹣ (*),
當0<x≤1時,f′(x)>0,f(x)在(0,1]上單調(diào)遞增,
f(x)max=f(1)=﹣6,∴a≥﹣6;
當﹣2≤x<0時,ax3﹣x2+4x+3≥0可化為a≤ ,
由(*)式可知,當﹣2≤x<﹣1時,f′(x)<0,f(x)單調(diào)遞減,
當﹣1<x<0時,f′(x)>0,f(x)單調(diào)遞增,
f(x)min=f(﹣1)=﹣2,∴a≤﹣2;
綜上所述,實數(shù)a的取值范圍是﹣6≤a≤﹣2,即實數(shù)a的取值范圍是[﹣6,﹣2].
所以答案是:[﹣6,﹣2].
【考點精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的判斷方法和函數(shù)的最值及其幾何意義的相關(guān)知識可以得到問題的答案,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=ax在區(qū)間[0,2]上的最大值和最小值的和為5,則函數(shù)y=logax在區(qū)間[ ,2]上的最大值和最小值之差是(
A.1
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 展開式中各項的系數(shù)之和比各項的二項式系數(shù)之和大992.
(1)求展開式中二項式系數(shù)最大的項;
(2)求展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過點P(1,1),傾斜角
(1)寫出直線l的參數(shù)方程;
(2)設(shè)l與圓C相交于兩點A,B,求點P到A,B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為直角坐標系的坐標原點,雙曲線 上有一點),點軸上的射影恰好是雙曲線的右焦點,過點作雙曲線兩條漸近線的平行線,與兩條漸近線的交點分別為, ,若平行四邊形的面積為1,則雙曲線的標準方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上且以3為周期的奇函數(shù),當時, ,則函數(shù)在區(qū)間上的零點個數(shù)是( )

A. 3 B. 5 C. 7 D. 9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù),
(1)求a的值;
(2)試判斷f(x)在(﹣∞,+∞)的單調(diào)性,并請你用函數(shù)單調(diào)性的定義給予證明;
(3)若對任意的t∈R,不等式f(mt2+1)+f(1﹣mt)<0恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xsinx,有下列四個結(jié)論: ①函數(shù)f(x)的圖象關(guān)于y軸對稱;
②存在常數(shù)T>0,對任意的實數(shù)x,恒有f(x+T)=f(x);
③對于任意給定的正數(shù)M,都存在實數(shù)x0 , 使得|f(x0)|≥M;
④函數(shù)f(x)在[0,π]上的最大值是
其中正確結(jié)論的序號是(請把所有正確結(jié)論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是圓心為的圓上的動點,點,線段的垂直平分線交于點.

(1)求動點的軌跡的方程;

(2)矩形的邊所在直線與曲線均相切,設(shè)矩形的面積為,求的取值范圍.

查看答案和解析>>

同步練習冊答案