【題目】某企業(yè)為確定下一年度投入某種產(chǎn)品的生產(chǎn)所需的資金,需了解每投入2千萬資金后,工人人數(shù)(單位:百人)對年產(chǎn)能(單位:千萬元)的影響,對投入的人力和年產(chǎn)能的數(shù)據(jù)作了初步處理,得到散點圖和統(tǒng)計量表.

1)根據(jù)散點圖判斷:哪一個適宜作為年產(chǎn)能關(guān)于投入的人力的回歸方程類型?并說明理由?

2)根據(jù)(1)的判斷結(jié)果及相關(guān)的計算數(shù)據(jù),建立關(guān)于的回歸方程;

3)現(xiàn)該企業(yè)共有2000名生產(chǎn)工人,資金非常充足,為了使得年產(chǎn)能達到最大值,則下一年度共需投入多少資金(單位:千萬元)?

附注:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為(說明:的導(dǎo)函數(shù)為)

【答案】(1)選擇,理由見解析;(2);(320千萬

【解析】

1)由圖可知適宜作為年產(chǎn)能關(guān)于投入的人力的回歸方程類型;

(2)由,,再利用最小二乘法求出,從而得到關(guān)于的回歸方程;

(3)利用導(dǎo)數(shù)求得當(dāng)時,取得最大值.

1)由圖可知適宜作為年產(chǎn)能關(guān)于投入的人力的回歸方程類型

若選擇,則,此時當(dāng)接近于0時,必小于0,

故選擇作為年產(chǎn)能關(guān)于投入的人力的回歸方程類型

2)由,,故符合線性回歸,.

,

,即,

關(guān)于的回歸方程.

3)當(dāng)人均產(chǎn)能達到最大時,年產(chǎn)能也達到最大,

(2)可知人均產(chǎn)能函數(shù),

時,,

時,單調(diào)遞增,時,單調(diào)遞減,

當(dāng)時,人均產(chǎn)能函數(shù)達到最大值,

因此,每2千萬資金安排2百人進行生產(chǎn),能使人均產(chǎn)能達到最大,

對于該企業(yè)共有2000名生產(chǎn)工人,且資金充足,

下一年度應(yīng)該投入20千萬資金進行生產(chǎn),可以適當(dāng)企業(yè)的產(chǎn)能達到最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓、為橢圓的左、右焦點,為橢圓上一點,且.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線,過點的直線交橢圓于、兩點,線段的垂直平分線分別交直線、直線、兩點,當(dāng)最小時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的通項公式為,數(shù)列的通項公式為.設(shè),若數(shù)列的最大項為,則實數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】太極是中國古代的哲學(xué)術(shù)語,意為派生萬物的本源.太極圖是以黑白兩個魚形紋組成的圓形圖案,俗稱陰陽魚.太極圖形象化地表達了陰陽輪轉(zhuǎn),相反相成是萬物生成變化根源的哲理.太極圖形展現(xiàn)了一種互相轉(zhuǎn)化,相對統(tǒng)一的形式美.按照太極圖的構(gòu)圖方法,在平面直角坐標(biāo)系中,圓的圖象分割為兩個對稱的魚形圖案,圖中的兩個一黑一白的小圓通常稱為“魚眼”,已知小圓的半徑均為,現(xiàn)在大圓內(nèi)隨機投放一點,則此點投放到“魚眼”部分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】半正多面體(semiregular solid)亦稱阿基米德多面體,如圖所示,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對稱美.將正方體沿交于一頂點的三條棱的中點截去一個三棱錐,如此共可截去八個三棱錐,得到一個有十四個面的半正多面體,它們的邊長都相等,其中八個為正三角形,六個為正方形,稱這樣的半正多面體為二十四等邊體.若二十四等邊體的棱長為,則該二十四等邊體外接球的表面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,試判斷的符號;

2)討論的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鳳鳴山中學(xué)的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是(

A.具有正線性相關(guān)關(guān)系

B.回歸直線過樣本的中心點

C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg

D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,在如右圖所示的程序框圖中,如果輸入,而輸出,則在空白處可填入(

A①②③ B②③ C③④ D②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高二年級舉行了由全體學(xué)生參加的一分鐘跳繩比賽,計分規(guī)則如下表:

每分鐘跳繩個數(shù)

得分

16

17

18

19

20

年級組為了解學(xué)生的體質(zhì),隨機抽取了100名學(xué)生的跳繩個數(shù)作為一個樣本,繪制了如下樣本頻率分布直方圖.

(1)現(xiàn)從樣本的100名學(xué)生跳繩個數(shù)中,任意抽取2人的跳繩個數(shù),求兩人得分之和小于35分的概率;(用最簡分?jǐn)?shù)表示)

(2)若該校高二年級共有2000名學(xué)生,所有學(xué)生的一分鐘跳繩個數(shù)近似服從正態(tài)分布,其中,為樣本平均數(shù)的估計值(同一組中數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點值作代表).利用所得的正態(tài)分布模型,解決以下問題:

(i)估計每分鐘跳繩164個以上的人數(shù)(結(jié)果四舍五入到整數(shù));

(ii)若在全年級所有學(xué)生中隨機抽取3人,每分鐘跳繩在179個以上的人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望與方差.

附:若隨機變量服從正態(tài)分布,則,.

查看答案和解析>>

同步練習(xí)冊答案