已知函數(shù)f(x)的定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=|x-a2|+|x-3a2|-4a2.若對(duì)任意x∈R,f(x)≤f(x+2),則實(shí)數(shù)a的取值范圍為
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:通過對(duì)x與a的關(guān)系分類討論,畫出圖象,路其周期性即可得出.
解答: 解:∵當(dāng)x>0時(shí),f(x)=|x-a2|+|x-3a2|-4a2
∴當(dāng)0<x≤a2時(shí),f(x)=a2-x+3a2-x-4a2=-2x;
當(dāng)a2<x≤3a2時(shí),f(x)=x-a2+3a2-x-4a2=-2a2
當(dāng)x>3a2時(shí),f(x)=x-a2+x-3a2-4a2=2x-8a2
畫出其圖象如下:

由于函數(shù)f(x)是定義在R上的奇函數(shù),即可畫出x<0時(shí)的圖象,與x>0時(shí)的圖象關(guān)于原點(diǎn)對(duì)稱.
∵?x∈R,f(x+2)≥f(x),
∴8a2≤2,
解得a∈[-
1
2
,
1
2
].
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性、分類討論的思想方法,考查了推理能力與計(jì)算能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=|x2-1|的圖象與函數(shù)y=x+k的圖象交點(diǎn)恰為3個(gè),則實(shí)數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x),對(duì)任意的x∈R,滿足f(-x)+f(x)=0,f(2-x)=f(x),且當(dāng)x∈[0,1]時(shí),f(x)=ax,若方程f(x)-lgx=0恰有五個(gè)實(shí)根,則實(shí)數(shù)a的取值范圍是( 。
A、(-lg11,-lg7)∪(2lg3,lg13)
B、(-2lg3,-lg7)∪(lg11,lg13)
C、(-lg13,-lg11)∪(lg7,2lg3)
D、(-lg13,-2lg3)∪(lg7,lg11)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:元).確定x=
 
,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科做)  設(shè)函數(shù)f(x)=ax+
x
x-1
(x>1)
(1)若a>0,求函數(shù)f(x)的最小值;
(2)若a是從1,2,3三個(gè)數(shù)中任取一個(gè)數(shù),b是從2,3,4,5四個(gè)數(shù)中任取一個(gè)數(shù),求f (x)>b恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:ρ=4sinθ與直線
x=3t
y=2-4t
(t為參數(shù))交于A,B兩點(diǎn),則|AB|=( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,最小正周期為2π的是( 。
A、y=cosx
B、y=sin(2x+π)
C、y=tanx
D、y=|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(x2+x-a).
(1)若f(x)的定義域?yàn)椋?∞,-3)∪(2,+∞),求實(shí)數(shù)a的值;
(2)若函數(shù)g(x)=f(x)+log
1
2
x的定義域是(0,+∞),值域?yàn)閇1,+∞),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若偶函數(shù)f(x)在(-∞,0]上為增函數(shù),則不等式f(2x+1)>f(2-x)的解集
 

查看答案和解析>>

同步練習(xí)冊(cè)答案