【題目】某社區(qū)超市購(gòu)進(jìn)了A,B,C,D四種新產(chǎn)品,為了解新產(chǎn)品的銷售情況,該超市隨機(jī)調(diào)查了15位顧客(記為)購(gòu)買這四種新產(chǎn)品的情況,記錄如下(單位:件):

產(chǎn)

A

1

1

1

1

1

B

1

1

1

1

1

1

1

1

C

1

1

1

1

1

1

1

D

1

1

1

1

1

1

(Ⅰ)若該超市每天的客流量約為300人次,一個(gè)月按30天計(jì)算,試估計(jì)產(chǎn)品A的月銷售量(單位:件);

(Ⅱ)為推廣新產(chǎn)品,超市向購(gòu)買兩種以上(含兩種)新產(chǎn)品的顧客贈(zèng)送2元電子紅包.現(xiàn)有甲、乙、丙三人在該超市購(gòu)物,記他們獲得的電子紅包的總金額為X,

求隨機(jī)變量X的分布列和數(shù)學(xué)期望;

(Ⅲ)若某顧客已選中產(chǎn)品B,為提高超市銷售業(yè)績(jī),應(yīng)該向其推薦哪種新產(chǎn)品?(結(jié)果不需要證明)

【答案】(1)3000(2)見解析(3)產(chǎn)品D .

【解析】試題分析: 1用產(chǎn)品A的頻數(shù)比上銷售總數(shù),乘以人數(shù),再乘以天數(shù)即可估計(jì)產(chǎn)品A的月銷售量; 2顧客購(gòu)買兩種(含兩種)以上新產(chǎn)品的概率為, X可取0,2,4,6 ,分別計(jì)算出概率,列出分布列并求出期望值; (3)產(chǎn)品D .

試題解析:(件),

答:產(chǎn)品A的月銷售量約為3000件.

(Ⅱ)顧客購(gòu)買兩種(含兩種)以上新產(chǎn)品的概率為.

X可取0,2,4,6 ,

, ,

,

所以X的分布列為:

X

0

2

4

6

P

所以.

(Ⅲ)產(chǎn)品D .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,以原點(diǎn)為圓心,橢圓C的短半軸長(zhǎng)為半徑的圓與直線相切.、是橢圓的左、右頂點(diǎn),直線過(guò)點(diǎn)且與軸垂直.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)是橢圓上異于、的任意一點(diǎn),作軸于點(diǎn),延長(zhǎng)到點(diǎn)使得,連接并延長(zhǎng)交直線于點(diǎn),為線段的中點(diǎn),判斷直線與以為直徑的圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)拋物線y2=2pxp>0的焦點(diǎn),斜率為2的直線交拋物線于Ax1,y1),Bx2,y2)(x1<x2兩點(diǎn)且|AB|=9

1求該拋物線的方程

2O為坐標(biāo)原點(diǎn),C為拋物線上一點(diǎn),,求λ的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的圓心在直線l:y=2x上,且經(jīng)過(guò)點(diǎn)A(﹣3,﹣1),B(4,6).

(Ⅰ)求圓C的方程;

(Ⅱ)點(diǎn)P是直線l上橫坐標(biāo)為﹣4的點(diǎn),過(guò)點(diǎn)P作圓C的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在(﹣∞,+∞)上的偶函數(shù),且在(﹣∞,0]上是增函數(shù),設(shè)a=f(log47),b=f(log 3),c=f(21.6),則a,b,c的大小關(guān)系是(
A.c<a<b
B.c<b<a
C.b<c<a
D.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 曲線上的動(dòng)點(diǎn)滿足:

.

1)求曲線的方程;

2)設(shè)為坐標(biāo)原點(diǎn),第一象限的點(diǎn)分別在上, ,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中, 成等差數(shù)列是的( )

A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,點(diǎn)是橢圓上任意一點(diǎn), 的周長(zhǎng)為.

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)點(diǎn) (-4,0)任作一動(dòng)直線交橢圓兩點(diǎn),記,若在線段上取一點(diǎn),使得,則當(dāng)直線轉(zhuǎn)動(dòng)時(shí),點(diǎn)在某一定直線上運(yùn)動(dòng),求該定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),判斷的單調(diào)性;

(2)若上為單調(diào)增函數(shù),求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案