已知冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(
1
3
,
1
9
),則f(x)的解析式為
 
考點(diǎn):冪函數(shù)的概念、解析式、定義域、值域,冪函數(shù)圖象及其與指數(shù)的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)出冪函數(shù)的解析式,由圖象過點(diǎn)(
1
3
,
1
9
),求出這個(gè)冪函數(shù)的解析式.
解答: 解:設(shè)冪函數(shù)的解析式為y=xα,α∈R,
∵圖象經(jīng)過點(diǎn)(
1
3
1
9
),
∴(
1
3
α=
1
9
,
∴α=2,
∴這個(gè)冪函數(shù)的解析式為y=x2
故答案為:y=x2
點(diǎn)評:本題考查了用待定系數(shù)法求函數(shù)解析式的問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=sin(ωx-
π
6
),ω>0,若函數(shù)f(x)的圖象與直線y=m(m為常數(shù))相切,并且切點(diǎn)的橫坐標(biāo)依次成公差為π的等差數(shù)列.
(1)求ω及m的值;
(2)將函數(shù)y=f(x)的圖象向左平移
π
12
,得到y(tǒng)=g(x)的圖象,當(dāng)x∈(
π
2
,
4
)時(shí),g(x)=cosα的交點(diǎn)橫坐標(biāo)依次為x1,x2,x3,若x1,x2,x3-
π
4
構(gòu)成等差數(shù)列,求鈍角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2-2x+2.
(1)求x∈[0,3]時(shí),求f(x)的最值;
(2)求 x∈[t,t+1]時(shí)f(x)的最小值g(t);
(3)求(2)中函數(shù)g(t)當(dāng)t∈[-3,-2]時(shí)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A={1,2,4,6},B={2,4,7},則A∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
ln(x-2)(x>2)
2x+
a
0
3t2dt(x≤2)
,若f(f(3))=9,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:①當(dāng)x∈[1,e2]時(shí),f(x)=lnx;②當(dāng)x∈[
1
e2
,1)時(shí),f(x)•f(
1
x
)=1.若函數(shù)g(x)=f(x)-ax,x∈[
1
e2
,e2]有兩個(gè)不同零點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}和{bn}都是等差數(shù)列,其前n項(xiàng)和分別為Sn和Tn,且
Sn
Tn
=
n+1
2n+1
,則
a5
b3
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+1,x>0
-x2-4x
+a,x≤0
在點(diǎn)(1,2)處的切線與f(x)的圖象有三個(gè)公共點(diǎn),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),且定義域?yàn)閇a-1,2a],則實(shí)數(shù)a,b的值為
 

查看答案和解析>>

同步練習(xí)冊答案