【題目】某甲籃球隊(duì)的12名隊(duì)員(含2名外援)中有5名主力隊(duì)員(含一名外援),主教練要從12名隊(duì)員中選5人首發(fā)上場(chǎng),則主力隊(duì)員不少于4人,且有一名外援上場(chǎng)的概率是_____

【答案】

【解析】

由題意可得:基本事件總數(shù)為,主力隊(duì)員不少于4人,即5名隊(duì)員中有主力隊(duì)員4人或者5人,并且其選法分別為種、1種,進(jìn)而根據(jù)等可能事件的概率公式可得答案.

由題意可得:主教練要從12名隊(duì)員中選5人首發(fā)上場(chǎng)不同的選法有:種.

因?yàn)橹髁﹃?duì)員不少于4人,所以5名隊(duì)員中有主力隊(duì)員4人或者5人,

當(dāng)從12名隊(duì)員中選5人首發(fā)上場(chǎng)其中主力隊(duì)員為4人并且有一名外援上場(chǎng)時(shí),不同的選法共有種;

當(dāng)從12名隊(duì)員中選5人首發(fā)上場(chǎng)其中主力隊(duì)員為5人并且有一名外援上場(chǎng)時(shí),不同的選法共有1種,

所以主力隊(duì)員不少于4人,且有一名外援上場(chǎng)的選法共有26種,

所以主力隊(duì)員不少于4人,且有一名外援上場(chǎng)的概率為:

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界.

1)設(shè),判斷上是否為有界函數(shù),若是,請(qǐng)說(shuō)明理由,并寫(xiě)出的所有上界的集合;若不是,也請(qǐng)說(shuō)明理由;

2)若函數(shù)上是以為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知非空集合是由一些函數(shù)組成,滿足如下性質(zhì):對(duì)任意,均存在反函數(shù),且;對(duì)任意,方程均有解;對(duì)任意、,若函數(shù)為定義在上的一次函數(shù),則.

1)若,,均在集合中,求證:函數(shù)

2)若函數(shù))在集合中,求實(shí)數(shù)的取值范圍;

3)若集合中的函數(shù)均為定義在上的一次函數(shù),求證:存在一個(gè)實(shí)數(shù),使得對(duì)一切,均有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)不相等的非零向量,兩組向量均由2個(gè)3個(gè)排列而成,記表示所有可能取值中的最小值,則下列命題中

15個(gè)不同的值;(2)若無(wú)關(guān);(3)若,則無(wú)關(guān);(4)若,則;(5)若,則的夾角為.正確的是( 。

A.1)(2B.2)(4C.3)(5D.1)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了配合今年上海迪斯尼樂(lè)園工作,某單位設(shè)計(jì)了統(tǒng)計(jì)人數(shù)的數(shù)學(xué)模型,以表示第個(gè)時(shí)刻進(jìn)入園區(qū)的人數(shù);以表示第個(gè)時(shí)刻離開(kāi)園區(qū)的人數(shù).設(shè)定以15分鐘為一個(gè)計(jì)算單位,上午9點(diǎn)15分作為第1個(gè)計(jì)算人數(shù)單位,即;9點(diǎn)30分作為第2個(gè)計(jì)算單位,即;依次類推,把一天內(nèi)從上午9點(diǎn)到晚上8點(diǎn)15分分成45個(gè)計(jì)算單位(最后結(jié)果四舍五入,精確到整數(shù)).

1)試計(jì)算當(dāng)天14點(diǎn)至15點(diǎn)這1小時(shí)內(nèi)進(jìn)入園區(qū)的游客人數(shù)、離開(kāi)園區(qū)的游客人數(shù)各為多少?

2)從13點(diǎn)45分(即)開(kāi)始,有游客離開(kāi)園區(qū),請(qǐng)你求出這之后的園區(qū)內(nèi)游客總?cè)藬?shù)最多的時(shí)刻,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=x2+|x﹣a|

1)當(dāng)a=1時(shí),求函數(shù)fx)的最小值;

2)試討論函數(shù)fx)的奇偶性,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一研學(xué)實(shí)踐活動(dòng)小組利用課余時(shí)間,對(duì)某公司1月份至5月份銷售某種產(chǎn)品的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,月銷售單價(jià)(單位:元)和月銷售量(單位:百件)之間的一組數(shù)據(jù)如下表所示:

月份

1

2

3

4

5

月銷售單價(jià)(元)

1.6

1.8

2

2.2

2.4

月銷售量(百件)

10

8

7

6

4

1)根據(jù)15月份的數(shù)據(jù),求出關(guān)于的回歸直線方程;

2)預(yù)計(jì)在今后的銷售中,月銷售量與月銷售單價(jià)仍然服從(1)中的關(guān)系,若該種產(chǎn)品的成本是1/件,那么該產(chǎn)品的月銷售單價(jià)應(yīng)定為多少元才能獲得最大月利潤(rùn)?(注:利潤(rùn)=銷售收入-成本)

(回歸直線方程,其中.參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于無(wú)窮數(shù)列,,若,則稱收縮數(shù)列”.其中,,分別表示中的最大數(shù)和最小數(shù).已知為無(wú)窮數(shù)列,其前項(xiàng)和為,數(shù)列收縮數(shù)列”.

1)若,求的前項(xiàng)和;

2)證明:收縮數(shù)列仍是;

3)若,求所有滿足該條件的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,,MAB的中點(diǎn).

1)求證:;

2)求二面角的余弦值;

3)在線段EC上是否存在點(diǎn)P,使得直線AP與平面ABE所成的角為,若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案