精英家教網 > 高中數學 > 題目詳情
棱長為1的正方體被以A為球心,AB為半徑的球相截,則所截得幾何體(球內部分)的表面積為                                  (    )
A.B.C.D.
A
由題意可知截得的幾何體占整個球體體積的,
所以.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖所示,多面體EF﹣ABCD中,底面ABCD為等腰梯形,AB∥CD,四邊形ACFE為矩形,且平面ACFE⊥平面ABCD,AD=DC=BC=CF=1,AC⊥BC,∠ADC=120°
(1)求證:BC⊥AF
(2)求平面BDF與平面CDF所成夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在三棱柱中,側棱底面,的中點,,.

(1)求證:平面;
(2) 求四棱錐的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,已知直三棱柱ABC–A′B′C′,AC ="AB" =AA,=2,AC,AB,AA′兩兩垂直,  E,F,H分別是AC,AB,BC的中點, 
(I)證明:EF⊥AH;   
(II)求平面EFC與平面BB′C′所成夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,直三棱柱,,AA′=1,點M,N分別為的中點。
(Ⅰ)證明:∥平面
(Ⅱ)求三棱錐的體積。(錐體體積公式V=Sh,其中S為底面面積,h為高)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在邊長為的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為AB、CF的中點,現沿AE、AF、EF折疊,使B、C、D三點重合,構成一個三棱錐.
(I)判別MN與平面AEF的位置關系,并給出證明;
(II)求多面體E-AFMN的體積.
                 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

正方體中,側面內有一動點到直線與直線的距離相等,則動點的軌跡為一段 (  )
A.圓弧B.雙曲線弧C.橢圓弧D.拋物線弧

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在三棱柱中,側面,為棱上異于的一點,,已知,求:
(Ⅰ)異面直線的距離;
(Ⅱ)二面角的平面角的正切值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

三棱錐V-ABC中,VA=VB=AC=BC=3,AB=2,VC=7,畫出二面角V-AB-C的平面角,并求它的余弦值。

查看答案和解析>>

同步練習冊答案