【題目】在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數方程為(為參數),直線l與曲線C交于M、N兩點。
(1)寫出直線l的普通方程和曲線C的直角坐標方程:
(2)若成等比數列,求a的值。
科目:高中數學 來源: 題型:
【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統計了該地區(qū)500名患者新冠病毒潛伏期的相關信息,數據經過匯總整理得到如圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數的患者,稱為“短潛伏者”,潛伏期高于平均數的患者,稱為“長潛伏者”.
(1)求這500名患者潛伏期的平均數(同一組中的數據用該組區(qū)間的中點值作代表),并計算出這500名患者中“長潛伏者”的人數;
(2)為研究潛伏期與患者年齡的關系,以潛伏期是否高于平均數為標準進行分層抽樣,從上述500名患者中抽取300人,得到如下表格.
(i)請將表格補充完整;
短潛伏者 | 長潛伏者 | 合計 | |
60歲及以上 | 90 | ||
60歲以下 | 140 | ||
合計 | 300 |
(ii)研究發(fā)現,某藥物對新冠病毒有一定的抑制作用,現需在樣本中60歲以下的140名患者中按分層抽樣方法抽取7人做I期臨床試驗,再從選取的7人中隨機抽取兩人做Ⅱ期臨床試驗,求兩人中恰有1人為“長潛伏者”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下四個命題中,正確的題號是__________.
①函數的最值一定是極值;
②設:實數,滿足;:實數,滿足,則是的充分不必要條件;
③已知橢圓:與雙曲線:的焦點重合,、分別為、的離心率,則,且;
④一動圓過定點,且與已知圓:相切,則動圓圓心的軌跡方程是.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市民用水擬實行階梯水價,每人用水量中不超過立方米的部分按4元/立方米收費,超出立方米的部分按10元/立方米收費,從該市隨機調查了10000位居民,獲得了他們某月的用水量數據,整理得到如下頻率分布直方圖:
(1)如果為整數,那么根據此次調查,為使80%以上居民在該月的用水價格為4元/立方米, 至少定為多少?
(2)假設同組中的每個數據用該組區(qū)間的右端點值代替,當時,估計該市居民該月的人均水費.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知高中學生的數學成績與物理成績具有線性相關關系,在一次考試中某班7名學生的數學成績與物理成績如下表:
數學成績 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理成績 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
(1)求這7名學生的數學成績的極差和物理成績的平均數;
(2)求物理成績對數學成績的線性回歸方程;若某位學生的數學成績?yōu)?/span>110分,試預測他的物理成績是多少?
下列公式與數據可供參考:
用最小二乘法求線性回歸方程的系數公式:,;
,,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】古希臘時期,人們認為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是(≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是.若某人滿足上述兩個黃金分割比例,且腿長為105cm,頭頂至脖子下端的長度為26 cm,則其身高可能是
A. 165 cmB. 175 cmC. 185 cmD. 190cm
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大提出,加快水污染防治,建設美麗中國.根據環(huán)保部門對某河流的每年污水排放量(單位:噸)的歷史統計數據,得到如下頻率分布表:
將污水排放量落入各組的頻率作為概率,并假設每年該河流的污水排放量相互獨立.
(1)求在未來3年里,至多1年污水排放量的概率;(2)該河流的污水排放對沿河的經濟影響如下:當時,沒有影響;當時,經濟損失為10萬元;當時,經濟損失為60萬元.為減少損失,現有三種應對方案:
方案一:防治350噸的污水排放,每年需要防治費3.8萬元;
方案二:防治310噸的污水排放,每年需要防治費2萬元;
方案三:不采取措施.
試比較上述三種文案,哪種方案好,并請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程:
已知極坐標系的極點在直角坐標系的原點,極軸與x軸非負半軸重合,直線l的參數方程為:(t為參數,a∈[0,π),曲線C的極坐標方程為:p=2cosθ.
(Ⅰ)寫出曲線C在直角坐標系下的標準方程;
(Ⅱ)設直線l與曲線C相交PQ兩點,若|PQ|,求直線l的斜率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com