2.已知平面α,β,且α∥β,若$\overrightarrow{a}$=(1,λ,2),$\overrightarrow$=(-3,6,-6)分別是兩個平面α,β的法向量,則實數(shù)λ的值為-2.

分析 利用面面平行的性質(zhì)定理、向量共線定理即可得出.

解答 解:∵α∥β,$\overrightarrow{a}$=(1,λ,2),$\overrightarrow$=(-3,6,-6)分別是兩個平面α,β的法向量,
∴$\overrightarrow{a}∥\overrightarrow$,
∴存在實數(shù)k使得$\overrightarrow{a}=k\overrightarrow$,
∴$\left\{\begin{array}{l}{1=-3k}\\{λ=6k}\\{2=-6k}\end{array}\right.$,解得$k=-\frac{1}{3}$,λ=-2.
故答案為:-2.

點評 本題考查了面面平行的性質(zhì)定理、向量共線定理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=-lnx(1≤x≤e2) 的值域是( 。
A.[0,2]B.[-2,0]C.[-$\frac{1}{2}$,0]D.[0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知y=ksinx+1,x∈R,則y的最大值為$\left\{\begin{array}{l}{k+1,k>0}\\{1,k=0}\\{-k+1,k<0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知空間兩條不同的直線m,n和兩個不同的平面α,β,則下列命題正確的是④
①若m∥α,n?α,則m∥n;  ②若α∩β=m,m⊥n,則n⊥α
③若m∥α,n∥α,則m∥n;  ④若m∥α,m?β,α∩β=n,則m∥n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=(x-2)||x|-a|,a>0.
(Ⅰ)當(dāng)a=3時,求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求f(x)在[-3,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.1B.$\frac{4}{3}$C.2D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=x2+aln(x+1).
(1)若a=-12,寫出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在[2,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)若在區(qū)間[0,1]上,函數(shù)f(x)在x=0處取得最大值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.為了創(chuàng)建全國衛(wèi)生城市,在湛江市民中選8名青年志愿者,其中有3名男青年志愿者,5名女青年志愿者,現(xiàn)從中選3人參加“創(chuàng)建全國衛(wèi)生城市”戶外活動導(dǎo)引工作,則這3人中既有男青年志愿者又有女青年志愿者的概率為( 。
A.$\frac{45}{512}$B.$\frac{75}{512}$C.$\frac{15}{64}$D.$\frac{45}{56}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an},a1=2,an+1=an+3n+2,則an=$\frac{1}{2}n({3n+1})$.

查看答案和解析>>

同步練習(xí)冊答案