分析 確定A,B的坐標(biāo),表示出向量,利用$\overrightarrow{PA}$•$\overrightarrow{PB}$=1,化簡可得點(diǎn)P的軌跡方程.
解答 解:設(shè)P(x,y),則
∵動直線l垂直于x軸,且與橢圓x2+2y2=4交于A,B兩點(diǎn),
∴由方程x2+2y2=4,可得A,B的縱坐標(biāo)為y=±$\sqrt{\frac{4-{x}^{2}}{2}}$
∴A(x,$\sqrt{\frac{4-{x}^{2}}{2}}$),B(x,-$\sqrt{\frac{4-{x}^{2}}{2}}$)(-2<x<2).
∵$\overrightarrow{PA}$•$\overrightarrow{PB}$=1,
∴(0,$\sqrt{\frac{4-{x}^{2}}{2}}$-y)•(0,-$\sqrt{\frac{4-{x}^{2}}{2}}$-y)=1
∴$\frac{x^2}{6}+\frac{y^2}{3}=1(-2<x<2)$
∴點(diǎn)P的軌跡方程為$\frac{x^2}{6}+\frac{y^2}{3}=1(-2<x<2)$.
故答案為:$\frac{x^2}{6}+\frac{y^2}{3}=1(-2<x<2)$.
點(diǎn)評 本題考查軌跡方程,考查向量知識的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a2×${a}^{\frac{1}{2}}$=a | B. | a2÷${a}^{\frac{1}{2}}$=a | C. | ${(a}^{2})^{\frac{1}{2}}$=a | D. | a2×a-2=a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y3>y1>y2 | B. | y2>y1>y3 | C. | y1>y2>y3 | D. | y1>y3>y2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A1C1⊥BD | B. | D1C1∥AB | ||
C. | 二面角A1-BC-D的平面角為45° | D. | AC1與平面ABCD所成的角為45° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}\vec a+\frac{1}{3}\vec b$ | B. | $\frac{1}{3}\vec a+\frac{2}{3}\vec b$ | C. | $\frac{1}{3}\vec a-\frac{2}{3}\vec b$ | D. | $\frac{1}{3}\vec a-\frac{1}{3}\vec b$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分且必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m>0 | B. | 0<m<$\frac{3}{2}$ | C. | -1<m<3 | D. | -<m<$\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com