1.已知f(x)=cos(x+$\frac{π}{6}$).
(1)f($\frac{5π}{2}$)+f($\frac{11π}{3}$)的值;
(2)若f(x)=$\frac{1}{4}$,求sin($\frac{4π}{3}$-x)+4cos2($\frac{2π}{3}$+x)的值;
(3)若x∈(-$\frac{π}{3}$,$\frac{π}{2}$],求f(x)的值域.

分析 (1)由條件利用誘導(dǎo)公式化簡(jiǎn)所給的式子可得結(jié)果.
(2)由條件利用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系,求得sin($\frac{4π}{3}$-x)+4cos2($\frac{2π}{3}$+x)的值.
(3)由x∈(-$\frac{π}{3}$,$\frac{π}{2}$],利用余弦函數(shù)的定義域和值域,求得f(x)的值域.

解答 解:(1)∵f(x)=cos(x+$\frac{π}{6}$),∴f($\frac{5π}{2}$)+f($\frac{11π}{3}$)=cos($\frac{5π}{2}$+$\frac{π}{6}$)+cos($\frac{11π}{3}$+$\frac{π}{6}$ )
=-sin$\frac{π}{6}$+cos$\frac{π}{6}$=$\frac{\sqrt{3}-1}{2}$.
(2)若f(x)=$\frac{1}{4}$,則 cos(x+$\frac{π}{6}$)=$\frac{1}{4}$,令x+$\frac{π}{6}$=θ,則x=θ-$\frac{π}{6}$,cosθ=$\frac{1}{4}$,
∴sin($\frac{4π}{3}$-x)+4cos2($\frac{2π}{3}$+x)=sin($\frac{3π}{2}$-θ)+4cos2($\frac{π}{2}$+θ)=-cosθ+4sin2θ
=-$\frac{1}{4}$+4(1-cos2θ)=-$\frac{1}{4}$+4(1-$\frac{1}{16}$)=$\frac{7}{2}$.
(3)若x∈(-$\frac{π}{3}$,$\frac{π}{2}$],則x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{2π}{3}$],cos(x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
故f(x)的值域?yàn)閇-$\frac{1}{2}$,1].

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系,余弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知分段函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}}&{x≤0}\\{2x-1}&{x>0}\end{array}\right.$,則下列正確的為(  )
A.f(2)=4B.f(2)=-4C.f(-2)=-5D.f(-2)=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥2}\\{2x-y≤4}\\{x-y≥0}\end{array}\right.$,則z=x+2y的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在四邊形ABCD中,∠A=∠B=∠C,點(diǎn)E在邊AB上,∠AED=60°,則一定有( 。
A.∠ADE=20°B.∠ADE=30°C.∠ADE=$\frac{1}{3}$∠ADCD.∠ADE=$\frac{1}{2}$∠ADC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)y=2sinx(x∈[0,π])的值域?yàn)閇1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)動(dòng)直線l垂直于x軸,且與橢圓x2+2y2=4交于A、B兩點(diǎn),P是l上滿足$\overrightarrow{PA}$•$\overrightarrow{PB}$=1的點(diǎn),則點(diǎn)P的軌跡方程$\frac{x^2}{6}+\frac{y^2}{3}=1(-2<x<2)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在Rt△ABC中,AC=BC,PA⊥平面ABC,PB與平面ABC成60°角
(1)求證:平面PBC⊥平面PAC;
(2)求二面角C-PB-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.從一條生產(chǎn)線上每隔30分鐘取一件產(chǎn)品,共取了n件,測(cè)得其產(chǎn)品尺寸后,畫出其頻率分布直方圖如圖,已知尺寸在[15,45)內(nèi)的頻數(shù)為92.
(Ⅰ)求n的值;
(Ⅱ)求尺寸在[20,25]內(nèi)產(chǎn)品的個(gè)數(shù);
(Ⅲ)估計(jì)尺寸大于25的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若三棱錐的三視圖如圖,則其表面積為30+6$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案