【題目】已知橢圓的離心率為, 傾斜角為的直線經(jīng)過橢圓的右焦點且與圓相切.
(1)求橢圓 的方程;
(2)若直線與圓相切于點, 且交橢圓于兩點,射線于橢圓交于點,設(shè)的面積與的面積分別為.
①求的最大值; ②當取得最大值時,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 (θ為參數(shù)).以原點O為極點,x軸的非負半軸為極軸建立極坐標方程.
(1)求曲線C的極坐標方程;
(2)若直線l:θ=α(α∈[0,π),ρ∈R)與曲線C相交于A,B兩點,設(shè)線段AB的中點為M,求|OM|的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)研究發(fā)現(xiàn),學生的注意力隨著老師講課時間的變化而變化,講課開始時,學生的興趣激增;中間有一段時間,學生的興趣保持較理想的狀態(tài),隨后學生的注意力開始分散.設(shè)f(t)表示學生注意力隨時間t(分鐘)的變化規(guī)律(f(t)越大,表明學生注意力越集中),經(jīng)過實驗分析得知:f(t)= ,
(1)求出k的值,并指出講課開始后多少分鐘,學生的注意力最集中?能堅持多久?
(2)一道數(shù)學難題,需要講解24分鐘,并且要求學生的注意力至少達到185,那么經(jīng)過適當安排,老師能否在學生達到所需的狀態(tài)下講授完這道題目?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學根據(jù)2002﹣2014年期間學生的興趣愛好,分別創(chuàng)建了“攝影”、“棋類”、“國學”三個社團,據(jù)資料統(tǒng)計新生通過考核遠拔進入這三個社團成功與否相互獨立,2015年某新生入學,假設(shè)他通過考核選拔進入該校的“攝影”、“棋類”、“國學”三個社團的概率依次為m, ,n,已知三個社團他都能進入的概率為 ,至少進入一個社團的概率為 ,且m>n.
(1)求m與n的值;
(2)該校根據(jù)三個社團活動安排情況,對進入“攝影”社的同學增加校本選修字分1分,對進入“棋類”社的同學增加校本選修學分2分,對進入“國學”社的同學增加校本選修學分3分.求該新同學在社團方面獲得校本選修課字分分數(shù)的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足ccosB=(2a+b)cos(π﹣C).
(1)求角C的大;
(2)若c=4,△ABC的面積為 ,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列關(guān)于簡單幾何體的說法中正確的是( )
①有兩個面互相平行,其余各面都是平行四邊形的多面體是棱柱;
②有一個面是多邊形,其余各面都是三角形的幾何體是棱錐;
③在斜二測畫法中,與坐標軸不平行的線段的長度在直觀圖中有可能保持不變;
④有兩個底面平行且相似其余各面都是梯形的多面體是棱臺;
⑤空間中到定點的距離等于定長的所有點的集合是球面.
A. ③④⑤ B. ③⑤ C. ④⑤ D. ①②⑤
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對任意x∈[﹣1,1],不等式﹣4≤x3+3|x﹣a|≤4恒成立,則實數(shù)a的取值范圍為( )
A.[﹣ , ]
B.[﹣ , ]
C.[0, ]
D.[0,1]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點M(1,0)和直線x=﹣1上的動點N(﹣1,t),線段MN的垂直平分線交直線y=t于點R,設(shè)點R的軌跡為曲線E.
(1)求曲線E的方程;
(2)直線y=kx+b(k≠0)交x軸于點C,交曲線E于不同的兩點A,B,點B關(guān)于x軸的對稱點為點P.點C關(guān)于y軸的對稱點為Q,求證:A,P,Q三點共線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com