【題目】已知函數(shù),,對(duì)任意的,恒有成立.
(1)如果為奇函數(shù),求滿足的條件.
(2)在(1)中條件下,若在上為增函數(shù),求實(shí)數(shù)的取值范圍.
【答案】(1),(2)
【解析】
(1)根據(jù)函數(shù)奇偶性的定義得恒成立,代入化簡得,結(jié)合恒成立得到值,由一元二次不等式恒成立結(jié)合可得的取值范圍;(2)根據(jù)單調(diào)性的定義和性質(zhì)得恒成立,建立不等式關(guān)系在上恒成立即可得到結(jié)論.
(1)設(shè)的定義域?yàn)?/span>,
因?yàn)?/span>為奇函數(shù),所以對(duì)任意,成立,
即,化簡得,
因?qū)τ谌我?/span>都成立,則.
因?yàn)閷?duì)任意的,恒有成立,
所以對(duì)任意的,恒有,
即對(duì)任意的恒成立。
由,得
于是滿足的條件為,.
(2)當(dāng)時(shí),。
因?yàn)?/span>在上為增函數(shù),
所以任取,且,
恒成立,
也就是恒成立,所以,
結(jié)合(1),得實(shí)數(shù)的取值范圍是。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且.若對(duì)任意的,,都有.
(1)判斷函數(shù)的單調(diào)性,并說明理由;
(2)若,求實(shí)數(shù)的取值范圍;.
(3)若不等式對(duì)任意和都恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若有三個(gè)極值點(diǎn),求的取值范圍;
(2)若對(duì)任意都恒成立的的最大值為,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過市場(chǎng)調(diào)查,超市中的某種小商品在過去的近40天的日銷售量(單位:件)與價(jià)格(單位:元)為時(shí)間(單位:天)的函數(shù),且日銷售量近似滿足,價(jià)格近似滿足。
(1)寫出該商品的日銷售額(單位:元)與時(shí)間()的函數(shù)解析式并用分段函數(shù)形式表示該解析式(日銷售額=銷售量商品價(jià)格);
(2)求該種商品的日銷售額的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的奇函數(shù)y=f(x)滿足f(3)=0,且當(dāng)x>0時(shí),不等式f(x)>﹣xf′(x)恒成立,則函數(shù)g(x)=xf(x)+lg|x+1|的零點(diǎn)的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為打入國際市場(chǎng),決定從、兩種產(chǎn)品中只選擇一種進(jìn)行投資生產(chǎn),已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬美元)
年固定成本 | 每件產(chǎn)品成本 | 每件產(chǎn)品銷售價(jià) | 每年最多可生產(chǎn)的件數(shù) | |
A產(chǎn)品 | 20 | 10 | 200 | |
B產(chǎn)品 | 40 | 8 | 18 | 120 |
其中年固定成本與年生產(chǎn)的件數(shù)無關(guān),是待定常數(shù),其值由生產(chǎn)產(chǎn)品的原材料決定,預(yù)計(jì),另外,年銷售件B產(chǎn)品時(shí)需上交萬美元的特別關(guān)稅,假設(shè)生產(chǎn)出來的產(chǎn)品都能在當(dāng)年銷售出去.
(1)求該廠分別投資生產(chǎn)A、兩種產(chǎn)品的年利潤與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系,并求出其定義域;
(2)如何投資才可獲得最大年利潤?請(qǐng)?jiān)O(shè)計(jì)相關(guān)方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓M:: (a>0)的一個(gè)焦點(diǎn)為F(﹣1,0),左右頂點(diǎn)分別為A,B.經(jīng)過點(diǎn)F的直線l與橢圓M交于C,D兩點(diǎn).
(1)求橢圓方程;
(2)當(dāng)直線l的傾斜角為45°時(shí),求線段CD的長;
(3)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為2,則輸入的正整數(shù)a的可能取值的集合是( )
A.{1,2,3,4,5}
B.{1,2,3,4,5,6}
C.{2,3,4,5}
D.{2,3,4,5,6}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)滿足如下四個(gè)條件:
①定義域?yàn)?/span>;
②;
③當(dāng)時(shí),;
④對(duì)任意滿足.
根據(jù)上述條件,求解下列問題:
⑴求及的值.
⑵應(yīng)用函數(shù)單調(diào)性的定義判斷并證明的單調(diào)性.
⑶求不等式的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com