精英家教網 > 高中數學 > 題目詳情

【題目】經過長期觀測得到:在交通繁忙的時段內,某公路汽車的車流量y(千輛/h)與汽車的平均速度v(km/h)之間的函數關系式為 . (I)若要求在該段時間內車流量超過2千輛/h,則汽車在平均速度應在什么范圍內?
(II)在該時段內,當汽車的平均速度v為多少時,車流量最大?最大車流量為多少?

【答案】(Ⅰ)解:由條件得 >2, 整理得到(v﹣20)(v﹣80)<0,解得20<v<80.
(Ⅱ)解:由題知,y= = ≤2.4.
當且僅當v= 即v=40時等號成立.
所以最大車流量為2.4千輛/h.
【解析】(I)由條件得 >2,解不等式即可求出v的范圍.(II)根據基本不等式性質可知 y= = ,進而求得y的最大值.根據等號成立的條件求得此時的平均速度.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)某工廠某種產品的年固定成本為250萬元,每生產千件,需另投入成本為,當年產量不足80千件時,(萬元).當年產量不小于80千件時,(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產的商品能全部售完.(Ⅰ)寫出年利潤(萬元)關于年產量(千件)的函數解析式;

(Ⅱ)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知曲線C的極坐標方程是ρ=4cosθ.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直l的參數方程是t是參數)

1)將曲線C的極坐標方程化為直角坐標方程;

2)若直線l與曲線C相交于AB兩點,且|AB|=,求直線的傾斜角α的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法中,正確的有 . (寫出所有正確說法的序號) ①已知關于x的不等式mx2+mx+2>0的角集為R,則實數m的取值范圍是0<m<4.
②已知等比數列{an}的前n項和為Sn , 則Sn、S2n﹣Sn、S3n﹣S2n也構成等比數列.
③已知函數 (其中a>0且a≠1)在R上單調遞減,且關于x的方程 恰有兩個不相等的實數解,則
④已知a>0,b>﹣1,且a+b=1,則 + 的最小值為
⑤在平面直角坐標系中,O為坐標原點,| |=| |=| |=1, + + = ,A(1,1),則 的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設命題p:函數f(x)=lg(ax2﹣x+ a)定義域為R;命題q:不等式3x﹣9x<a對任意x∈R恒成立.
(1)如果p是真命題,求實數a的取值范圍;
(2)如果命題“p或q”為真命題且“p且q”為假命題,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】集合M={x|﹣2≤x≤2},N={y|0≤y≤2},給出下列四個圖形,其中能表示以M為定義域,N為值域的函數關系的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一梯形的直觀圖是一個如圖所示的等腰梯形,且此梯形的面積為 ,則原梯形的面積為(
A.2
B.
C.2
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C1y=cosx,C2y=sin2x+),則下面結論正確的是( 。

A. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

B. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

C. 把C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

D. 把C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】點A,B,C,D在同一個球的球面上,AB=BC=2,AC=2 ,若四面體ABCD體積的最大值為 ,則該球的表面積為(
A.
B.8π
C.9π
D.12π

查看答案和解析>>

同步練習冊答案