【題目】點(diǎn)A,B,C,D在同一個(gè)球的球面上,AB=BC=2,AC=2 ,若四面體ABCD體積的最大值為 ,則該球的表面積為( )
A.
B.8π
C.9π
D.12π
【答案】C
【解析】解:根據(jù)題意知,△ABC是一個(gè)直角三角形,其面積為2.其所在球的小圓的圓心在斜邊AC的中點(diǎn)上,設(shè)小圓的圓心為Q,四面體ABCD的體積的最大值,由于底面積S△ABC不變,高最大時(shí)體積最大,
所以,DQ與面ABC垂直時(shí)體積最大,最大值為 ×S△ABC×DQ= ,
S△ABC= ACBQ= =2.
即 × ×DQ= ,∴DQ=2,如圖.
設(shè)球心為O,半徑為R,則在直角△AQO中,
OA2=AQ2+OQ2 , 即R2=( )2+(2﹣R)2 , ∴R=
則這個(gè)球的表面積為:S=4π( )2=9π;
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)長(zhǎng)期觀測(cè)得到:在交通繁忙的時(shí)段內(nèi),某公路汽車(chē)的車(chē)流量y(千輛/h)與汽車(chē)的平均速度v(km/h)之間的函數(shù)關(guān)系式為 . (I)若要求在該段時(shí)間內(nèi)車(chē)流量超過(guò)2千輛/h,則汽車(chē)在平均速度應(yīng)在什么范圍內(nèi)?
(II)在該時(shí)段內(nèi),當(dāng)汽車(chē)的平均速度v為多少時(shí),車(chē)流量最大?最大車(chē)流量為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AM與圓C1:(x+4)2+y2=2外切,與圓C2:(x﹣4)2+y2=2內(nèi)切,求動(dòng)圓圓心M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(n)=n2cos(nπ),且an=f(n)+f(n+1),則a1+a2+a3+…+a100=( )
A.0
B.﹣100
C.100
D.10200
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四組函數(shù),表示同一函數(shù)的是( )
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)=lnx2 , g(x)=2lnx
D.f(x)=logaax(a>0,a≠1),g(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)抽取一個(gè)年份,對(duì)西安市該年4月份的天氣情況進(jìn)行統(tǒng)計(jì),結(jié)果如下:
(Ⅰ)在4月份任取一天,估計(jì)西安市在該天不下雨的概率;
(Ⅱ)西安市某學(xué)校擬從4月份的一個(gè)晴天開(kāi)始舉行連續(xù)2天的運(yùn)動(dòng)會(huì),估計(jì)運(yùn)動(dòng)會(huì)期間不下雨的概率.
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
天氣 | 晴 | 雨 | 陰 | 陰 | 陰 | 雨 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 晴 |
日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
天氣 | 晴 | 陰 | 雨 | 陰 | 陰 | 晴 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 雨 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2cosxcos-sin2x+sinxcosx.
(1)求f(x)的最小正周期;
(2)若關(guān)于x的方程在x∈上有兩個(gè)不同的實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐P﹣ABCD的底面為矩形,PA⊥平面ABCD,PA=AB=2,AD=1,點(diǎn)M為PC中點(diǎn),過(guò)A、M的平面α與此四棱錐的面相交,交線圍成一個(gè)四邊形,且平面α⊥平面PBC.
(1)在圖中畫(huà)出這個(gè)四邊形(不必說(shuō)出畫(huà)法和理由);
(2)求平面α與平面ABM所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(m+1)x+m,g(x)=﹣(m+4)x﹣4+m,m∈R.
(1)比較f(x)與g(x)的大小;
(2)解不等式f(x)≤0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com