【題目】已知圓,直線被圓所截得的弦的中點(diǎn)為P53).(1)求直線的方程;(2)若直線與圓相交于兩個(gè)不同的點(diǎn),求b的取值范圍.

【答案】12

【解析】

I)根據(jù)圓心CP與半徑垂直,可求出直線l1的斜率,進(jìn)而得到點(diǎn)斜式方程,再化成一般式即可.

II)根據(jù)直線與圓的位置關(guān)系,圓心到直線的距離小于半徑得到關(guān)于b的不等式,從而解出b的取值范圍.

1)由,得,

圓心,半徑為3.…………………2

由垂徑定理知直線直線,

直線的斜率,故直線的斜率……………5

直線的方程為,即.…………………7

2)解法1:由題意知方程組有兩組解,由方程組消去

,該方程應(yīng)有兩個(gè)不同的解,…………………9

,化簡(jiǎn)得,………………10

解得

的解為.…………………………13

b的取值范圍是.…………………………14

解法2:同(1)有圓心,半徑為3.…………………9

由題意知,圓心到直線的距離小于圓的半徑,即

,即,………………………11

解得,………………………13

b的取值范圍是.…………………14

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn滿(mǎn)足bn+1﹣bn=an , 且b2=﹣18,b3=﹣24.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求bn取得最小值時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ﹣ax+cosx(a∈R),x∈[﹣ ].
(1)若函數(shù)f(x)是偶函數(shù),試求a的值;
(2)當(dāng)a>0時(shí),求證:函數(shù)f(x)在(0, )上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ax2+
(I) 當(dāng)a= 時(shí),判斷f(x)在其定義上的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2 , 其中x1<x2 . 求證:
(i)f(x2)>0;
(ii)x1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , a4+a7=20,對(duì)任意的k∈N都有Sk+1=3Sk+k2
(I) 求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}定義如下:2mbm(m∈N*)是使不等式an≥m成立所有n中的最小值,求{bn}的通項(xiàng)公式及{(﹣1)m1bm}的前2m項(xiàng)和T2m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)h(x)=x2+ax+b在(0,1)上有兩個(gè)不同的零點(diǎn),記min{m,n}= ,則min{h(0),h(1)}的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣x+ +1(a∈R).
(1)討論f(x)的單調(diào)性與極值點(diǎn)的個(gè)數(shù);
(2)當(dāng)a=0時(shí),關(guān)于x的方程f(x)=m(m∈R)有2個(gè)不同的實(shí)數(shù)根x1 , x2 , 證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在高二年級(jí)實(shí)行選課走班教學(xué),學(xué)校為學(xué)生提供了多種課程,其中數(shù)學(xué)科提供5種不同層次的課程,分別稱(chēng)為數(shù)學(xué)1、數(shù)學(xué)2、數(shù)學(xué)3、數(shù)學(xué)4、數(shù)學(xué)5,每個(gè)學(xué)生只能從這5種數(shù)學(xué)課程中選擇一種學(xué)習(xí),該校高二年級(jí)1800名學(xué)生的數(shù)學(xué)選課人數(shù)統(tǒng)計(jì)如表:

課程

數(shù)學(xué)1

數(shù)學(xué)2

數(shù)學(xué)3

數(shù)學(xué)4

數(shù)學(xué)5

合計(jì)

選課人數(shù)

180

540

540

360

180

1800

為了了解數(shù)學(xué)成績(jī)與學(xué)生選課情況之間的關(guān)系,用分層抽樣的方法從這1800名學(xué)生中抽取了10人進(jìn)行分析.
(1)從選出的10名學(xué)生中隨機(jī)抽取3人,求這3人中至少有2人選擇數(shù)學(xué)2的概率;
(2)從選出的10名學(xué)生中隨機(jī)抽取3人,記這3人中選擇數(shù)學(xué)2的人數(shù)為X,選擇數(shù)學(xué)1的人數(shù)為Y,設(shè)隨機(jī)變量ξ=X﹣Y,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將分別標(biāo)有“孔”“孟”“之”“鄉(xiāng)”漢字的四個(gè)小球裝在一個(gè)不透明的口袋中,這些球除漢字外無(wú)其他差別,每次摸球前先攪拌均勻,隨機(jī)摸出一球,不放回;再隨機(jī)摸出一球兩次摸出的球上的漢字組成“孔孟”的概率是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案