分析 (1)求出該二次函數(shù)的最小值便可得出$f(a)=-\frac{1}{4}a+2$;
(2)根據(jù)減函數(shù)的定義,設(shè)任意的a1,a2∈[1,5],且a1<a2,然后作差,從而證明f(a1)>f(a2),便可得出f(a)在[1,5]上遞減.
解答 解:(1)根據(jù)題意:f(a)=$\frac{8a-{a}^{2}}{4a}=-\frac{1}{4}a+2$;
即f(a)=$-\frac{1}{4}a+2$;
(2)證明:設(shè)a1,a2∈[1,5],且a1<a2,則:
$f({a}_{1})-f({a}_{2})=\frac{1}{4}({a}_{2}-{a}_{1})$;
∵a1<a2;
∴a2-a1>0;
∴f(a1)>f(a2);
∴f(a)在[1,5]上遞減.
點(diǎn)評(píng) 考查二次函數(shù)的最值公式,并清除二次項(xiàng)系數(shù)的符號(hào)與取得最大或最小值的關(guān)系,一次函數(shù)的單調(diào)性,以及根據(jù)減函數(shù)的定義證明一個(gè)函數(shù)為減函數(shù)的方法和過(guò)程,作差比較法的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 18 | B. | 17 | C. | 16 | D. | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com