(本小題滿分12分)定義域為的函數(shù)滿足,當(dāng)時,
(1)當(dāng)時,求的解析式;
(2)當(dāng)x∈時,恒成立,求實數(shù)的取值范圍.
(1);(2)

試題分析:(1)由已知條件可求出f(x+4)=9f(x),設(shè)x∈[-4,-2],則4+x∈[0,2],由已知可得f(x+4)的解析式,即可得解.(2)首先求出,x∈時的值域,由已知可得,解不等式即可.
試題解析:(1)由f(x+2)=3f(x),得f(x+4)=3f(x+2)=9f(x),
設(shè)x∈[-4,-2],則4+x∈[0,2],∴f(x+4)=(x+4)2-2(x+4)=x2+6x+8,
因為f(x+4)=9f(x)
.
(2)因為x∈時,恒成立,所以x∈時, 恒成立.而x∈時,,所以,即,解得
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量,,其中.函數(shù)在區(qū)間上有最大值為4,設(shè).
(1)求實數(shù)的值;
(2)若不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)是二次函數(shù),不等式的解集是,且在區(qū)間上的最大值為12.
(1)求的解析式;
(2)設(shè)函數(shù)上的最小值為,求的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的定義域為R,則實數(shù)m的取值范圍是(  。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在區(qū)間上是增函數(shù),則實數(shù)a的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)在區(qū)間上有最大值3,最小值2,則的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點在直線上運動,則的最小值為  (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)在區(qū)間上遞減,則實數(shù)的取值范圍是___ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知x1、x2是關(guān)于x的一元二次方程x2+(3a-1)x+2a2-1=0的兩個實數(shù)根,使得
(3x1-x2)(x1-3x2)=-80成立.求實數(shù)a的所有可能值.

查看答案和解析>>

同步練習(xí)冊答案