18.在圓柱內(nèi)有一個內(nèi)接正三棱錐,過一條側(cè)棱和高作截面,正確的截面圖形是( 。
A.B.C.D.

分析 根據(jù)題意,畫出幾何體的圖形,容易得出圓柱與棱錐的截面圖形.

解答 解:由題意作出圖形,如圖所示;
SO⊥底面BPM,過側(cè)棱SB與高的平面ABCD
截得圓柱與圓柱內(nèi)接正三棱錐S-BPM,
截面圖形為D選項.
故選:D.

點評 本題考查了三棱錐的結(jié)構(gòu)特征以及圓柱的內(nèi)接三棱錐的應用問題,與考查空間想象能力,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.若g(x)=1-2x,f[g(x)]=$\frac{1-x}{1+x}$,則f(4)=( 。
A.-5B.5C.-10D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知$f(x+\frac{1}{x})={x^2}+\frac{1}{x^2}$,則函數(shù)f(x)=( 。
A.x2-2(x≠0)B.x2-2(x≥2)C.x2-2(|x|≥2)D.x2-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖,在正四棱錐S-ABCD中,E,M,N分別是B,CD,SC的中點,P在線段MN上且NP=2PM,下列四個結(jié)論:
①EP⊥AC;②EP⊥面SAC;③EP∥BD;④EP∥面SBD中成立的為(  )
A.①③B.①②C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知{an}是遞增的等差數(shù)列,a1=2,且a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn=2an+an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2).
(1)若f(x)能表示成一個奇函數(shù)g(x)和一個偶函數(shù)h(x)的和,求g(x)和h(x)的解析式;
(2)已知P={a|函數(shù)f(x)在區(qū)間[(a+1)2,+∞)上是增函數(shù)};Q={a|函數(shù)g(x)是減函數(shù)}.求(P∩CRQ)∪(Q∩CRP);
(3)在(2)的條件下,比較f(2)與3-lg2的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若函數(shù)f(x)=$\frac{x+b}{(2x+1)(x-a)}$為奇函數(shù),則a+b=( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.求由下列函數(shù)的導數(shù)$\frac{dy}{dx}$:
(1)y=$\sqrt{xsinx\sqrt{1-{e}^{x}}}$
(2)y=$\frac{\sqrt{x+2}(3-x)^{4}}{(x+1)^{5}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知tan(π-α)=-$\frac{1}{2}$,求$\frac{2sin(π-α)-3cos(π+α)}{3cos(π-α)+4cos(\frac{π}{2}+α)}$.

查看答案和解析>>

同步練習冊答案