某段鐵路所有車站共發(fā)行20種普通車票,那么這段鐵路共有車站數(shù)是(  )
A、4B、5C、8D、10
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:排列組合
分析:根據(jù)題意,設(shè)車站數(shù)有n個(gè),列出方程
A
2
n
=20,求出n的值.
解答: 解:設(shè)車站數(shù)有n個(gè),則
A
2
n
=20,
即n(n-1)=20,
解得n=5,n=-4(舍去).
∴故選:B.
點(diǎn)評:本題考查了排列與組合的應(yīng)用問題,解題時(shí)應(yīng)根據(jù)題意,設(shè)出未知數(shù),列出方程,求出答案來,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=
3
cosx+sinx(x∈R)的圖象向左平移m(m>0)個(gè)長度單位后,所得到的圖象關(guān)于原點(diǎn)對稱,則m的最小值是( 。
A、
π
12
B、
π
6
C、
π
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=sin
1
4
x•sin
1
4
(x+2π)•sin
1
2
(x+3π)-
1
2
cos2
π
2
在區(qū)間(0,+∞)內(nèi)的全部極值點(diǎn)按從小到大的順序排成數(shù)列{an}(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2nan,數(shù)列{bn}的前n項(xiàng)和Tn,求Tn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是邊長為1的正方形,MA⊥平面ABCD,MA=2動(dòng)點(diǎn)P在正方形的邊上從點(diǎn)A出發(fā)經(jīng)過點(diǎn)B運(yùn)動(dòng)到點(diǎn)C.設(shè)點(diǎn)P走過的路程為x,△MAP的面積為S(x),則函數(shù)y=S2(x)的圖象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=|x-3|的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)說法,其中正確的是( 。
①方程x2-4x-5=0的兩根之和為-4,兩根之積為-5;
②方程x2-4x-5=0的兩根之和為4,兩根之積為-5;
③方程4x2-9=0的兩根之和為0,兩根之積為-
9
4

④方程5x2-2x=0的兩根之和為2,兩根之積為0.
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,∠AOB=
π
3
,動(dòng)點(diǎn)A1,A2與B1,B2分別在射線OA,OB上,且線段A1A2的長為1,線段B1B2的長為2,點(diǎn)M,N分別是線段A1B1,A2B2的中點(diǎn).
(Ⅰ)用向量
A1A2
B1B2
表示向量
MN
;
(Ⅱ)求向量
MN
的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①經(jīng)過兩條相交的直線,有且只有一個(gè)平面
②分別在兩個(gè)平面內(nèi)的直線是異面直線
③若兩條直線都于第三條直線垂直,則這兩條直線互相平行
④一條直線與兩個(gè)平行的平面中的一個(gè)相交,則必與另一個(gè)也相交.
其中錯(cuò)誤的命題有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>b,ab≠0下列不等式(1)a2>b2;(2)2a>2b;(3)
1
a
1
b
;(4)a 
1
3
>b 
1
3
;(5)(
1
3
a<(
1
3
b中恒成立的有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

同步練習(xí)冊答案