【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線直角坐標(biāo)方程;
(2)設(shè)為曲線上的動(dòng)點(diǎn),求點(diǎn)到上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)的坐標(biāo).
【答案】(1),;(2)的最小值為,此時(shí)點(diǎn)P的坐標(biāo)為
【解析】
(1)由曲線得,兩式兩邊平方相加,即可得到曲線的普通方程,由極坐標(biāo)和直角坐標(biāo)的互化公式,即可得到曲線的直角坐標(biāo)方程.
(2)由(1),設(shè)橢圓上的點(diǎn)到直線的距離,轉(zhuǎn)化為三角函數(shù),利用三角函數(shù)的圖象與性質(zhì),即可求解。
(1)由曲線得,
兩式兩邊平方相加得,
即曲線的普通方程為
由曲線得:,
即,所以,
即曲線的直角坐標(biāo)方程為.
(2)由(1)知橢圓與直線無(wú)公共點(diǎn),
依題意有橢圓上的點(diǎn)到直線的距離為
,
所以當(dāng)時(shí),取得最小值,
此時(shí),點(diǎn)的坐標(biāo)為。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求的極值;
(Ⅱ)若在區(qū)間上恒成立,求的取值范圍;
(Ⅲ)判斷函數(shù)的零點(diǎn)個(gè)數(shù).(直接寫(xiě)出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代儒家要求學(xué)生掌握六種基本才藝:禮、樂(lè)、射、御、書(shū)、數(shù),簡(jiǎn)稱“六藝”,某高中學(xué)校為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂(lè)、射、御、書(shū)、數(shù)”六場(chǎng)傳統(tǒng)文化知識(shí)競(jìng)賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐,規(guī)定:每場(chǎng)知識(shí)競(jìng)賽前三名的得分都分別為且;選手最后得分為各場(chǎng)得分之和,在六場(chǎng)比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場(chǎng)比賽中獲得第一名,下列說(shuō)法正確的是( )
A. 乙有四場(chǎng)比賽獲得第三名
B. 每場(chǎng)比賽第一名得分為
C. 甲可能有一場(chǎng)比賽獲得第二名
D. 丙可能有一場(chǎng)比賽獲得第一名
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x+,且此函數(shù)的圖象過(guò)點(diǎn)(1,5).
(1)求實(shí)數(shù)m的值并判斷f(x)的奇偶性;
(2)判斷函數(shù)f(x)在[2,+∞)上的單調(diào)性,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“干支紀(jì)年法”是中國(guó)歷法上自古以來(lái)使用的紀(jì)年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_(kāi)始,“地支”以“子”字開(kāi)始,兩者按干支順序相配,組成了干支紀(jì)年法,其相配順序?yàn)椋杭鬃、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得?0個(gè)組合,稱六十甲子,周而復(fù)始,無(wú)窮無(wú)盡。2019年是“干支紀(jì)年法”中的己亥年,那么2026年是“干支紀(jì)年法”中的
A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)三棱錐的底面是正三角形,側(cè)棱長(zhǎng)均相等,是棱上的點(diǎn)(不含端點(diǎn)),記直線與直線所成角為,直線與平面所成角為,二面角的平面角為,則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形所在平面與半圓弧所在平面垂直,是上異于,的點(diǎn).
(1)證明:平面平面;
(2)在線段上是否存在點(diǎn),使得平面?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com