【題目】中國古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某高中學(xué)校為弘揚“六藝”的傳統(tǒng)文化,分別進行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識競賽,現(xiàn)有甲、乙、丙三位選手進入了前三名的最后角逐,規(guī)定:每場知識競賽前三名的得分都分別為;選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場比賽中獲得第一名,下列說法正確的是( )

A. 乙有四場比賽獲得第三名

B. 每場比賽第一名得分

C. 甲可能有一場比賽獲得第二名

D. 丙可能有一場比賽獲得第一名

【答案】A

【解析】

先計算總分,推斷出,再根據(jù)正整數(shù)把計算出來,最后推斷出每個人的得分情況,得到答案.

由題可知,且都是正整數(shù)

當(dāng)時,甲最多可以得到24分,不符合題意

當(dāng)時,,不滿足

推斷出,

最后得出結(jié)論:

甲5個項目得第一,1個項目得第三

乙1個項目得第一,1個項目得第二,4個項目得第三

丙5個項目得第二,1個項目得第三,

所以A選項是正確的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某熱帶風(fēng)暴中心B位于海港城市A東偏南30°的方向,與A市相距400km.該熱帶風(fēng)暴中心B的速度向正北方向移動,影響范圍的半徑是350km.問:從此時起,經(jīng)多長時間后A市將受熱帶風(fēng)暴影響,大約受影響多長時間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點G(x,y)滿足

(1)求動點G的軌跡C的方程;

(2)過點Q(1,1)作直線L與曲線交于不同的兩點,且線段中點恰好為Q.求的面積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,DAC的中點,四邊形BDEF是菱形,平面平面ABC,,,

若點M是線段BF的中點,證明:平面AMC;

求平面AEF與平面BCF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國高鐵的快速發(fā)展給群眾出行帶來巨大便利,極大促進了區(qū)域經(jīng)濟社會發(fā)展.已知某條高鐵線路通車后,發(fā)車時間間隔(單位:分鐘)滿足,經(jīng)測算,高鐵的載客量與發(fā)車時間間隔相關(guān):當(dāng)時高鐵為滿載狀態(tài),載客量為人;當(dāng)時,載客量會在滿載基礎(chǔ)上減少,減少的人數(shù)與成正比,且發(fā)車時間間隔為分鐘時的載客量為.記發(fā)車間隔為分鐘時,高鐵載客量為.

的表達式;

若該線路發(fā)車時間間隔為分鐘時的凈收益(元),當(dāng)發(fā)車時間間隔為多少時,單位時間的凈收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

當(dāng)時,討論的導(dǎo)函數(shù)在區(qū)間上零點的個數(shù);

當(dāng)時,函數(shù)的圖象恒在圖象上方,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)對任意,都有,且時,.

(1)求證是奇函數(shù);

(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程與曲線直角坐標(biāo)方程;

(2)設(shè)為曲線上的動點,求點上點的距離的最小值,并求此時點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】各項均為正數(shù)的等比數(shù)列滿足,,若函數(shù)的導(dǎo)函數(shù)為, ( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案