【題目】若數(shù)列中存在三項(xiàng),按一定次序排列構(gòu)成等比數(shù)列,則稱為“等比源數(shù)列”。
(1)在無窮數(shù)列中,,,求數(shù)列的通項(xiàng)公式;
(2)在(1)的結(jié)論下,試判斷數(shù)列是否為“等比源數(shù)列”,并證明你的結(jié)論;
(3)已知無窮數(shù)列為等差數(shù)列,且,(),求證:數(shù)列為“等比源數(shù)列”.
【答案】(1);(2)不是,證明見解析;(3)證明見解析.
【解析】
(1)由,可得出,則數(shù)列為等比數(shù)列,然后利用等比數(shù)列的通項(xiàng)公式可間接求出;
(2)假設(shè)數(shù)列為“等比源數(shù)列”,則此數(shù)列中存在三項(xiàng)成等比數(shù)列,可得出,展開后得出,然后利用數(shù)的奇偶性即可得出結(jié)論;
(3)設(shè)等差數(shù)列的公差為,假設(shè)存在三項(xiàng)使得,展開得出,從而可得知,當(dāng),時(shí),原命題成立.
(1),得,即,且.
所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,則,
因此,;
(2)數(shù)列不是“等比源數(shù)列”,下面用反證法來證明.
假設(shè)數(shù)列是“等比源數(shù)列”,則存在三項(xiàng)、、,設(shè).
由于數(shù)列為單調(diào)遞增的正項(xiàng)數(shù)列,則,所以.
得,化簡(jiǎn)得,
等式兩邊同時(shí)除以得,
,且、、,則,,,,
則為偶數(shù),為奇數(shù),等式不成立.
因此,數(shù)列中不存在任何三項(xiàng),按一定的順序排列構(gòu)成“等比源數(shù)列”;
(3)不妨設(shè)等差數(shù)列的公差.
當(dāng)時(shí),等差數(shù)列為非零常數(shù)列,此時(shí),數(shù)列為“等比源數(shù)列”;
當(dāng)時(shí),,則且,數(shù)列中必有一項(xiàng),
為了使得數(shù)列為“等比源數(shù)列”,只需數(shù)列中存在第項(xiàng)、第項(xiàng)使得,
且有,即,
,
當(dāng)時(shí),即當(dāng),時(shí),
等式成立,
所以,數(shù)列中存在、、成等比數(shù)列,因此,等差數(shù)列是“等比源數(shù)列”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,為的導(dǎo)函數(shù),設(shè),且恒成立.
(1)求的取值范圍;
(2)設(shè)函數(shù)的零點(diǎn)為,函數(shù)的極小值點(diǎn)為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓,設(shè)是橢圓上任一點(diǎn),從原點(diǎn)向圓作兩條切線,切點(diǎn)分別為.
(1)若直線互相垂直,且點(diǎn)在第一象限內(nèi),求點(diǎn)的坐標(biāo);
(2)若直線的斜率都存在,并記為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面,,,,,分別是,的中點(diǎn).
(1)求三棱錐的體積;
(2)若異面直線與所成的角為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中是自然對(duì)數(shù)的底數(shù).
(Ⅰ),使得不等式成立,試求實(shí)數(shù)的取值范圍;
(Ⅱ)若,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、滿足:,,,.
(1)求,,,;
(2)求證:數(shù)列是等差數(shù)列,并求的通項(xiàng)公式;
(3)設(shè),若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】任意實(shí)數(shù),,定義,設(shè)函數(shù),數(shù)列是公比大于0的等比數(shù)列,且,,則____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,數(shù)列、滿足:,,記.
(1)若,,求數(shù)列、的通項(xiàng)公式;
(2)證明:數(shù)列是等差數(shù)列;
(3)定義,證明:若存在,使得、為整數(shù),且有兩個(gè)整數(shù)零點(diǎn),則必有無窮多個(gè)有兩個(gè)整數(shù)零點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com