已知向量
a
=(sinx,
3
2
),
b
=(cosx,-1)
(1)當
a
b
時,求tanx的值;
(2)求f(x)=
a
b
+
b
2
的最大值,并寫出函數(shù)f(x)取得最大值時自變量x的集合.
考點:平面向量數(shù)量積的運算,平行向量與共線向量
專題:平面向量及應用
分析:(1)利用向量共線定理和同角三角函數(shù)基本關系式即可得出..
(2)利用數(shù)量積運算、倍角公式、兩角和差的正弦公式可得f(x)=
2
2
sin(2x+
π
4
)
,再利用正弦函數(shù)的單調(diào)性有界性即可得出.
解答: 解:(1)∵
a
b
,∴-sinx-
3
2
cosx
=0,∴tanx=-
3
2

(2)f(x)=
a
b
+
b
2
=sinxcosx-
3
2
+cos2x+1
=
1
2
sin2x-
1
2
+
1+cos2x
2

=
2
2
sin(2x+
π
4
)

當2x+
π
4
=
π
2
+2kπ
時,即x=
π
8
+kπ(k∈Z)時,sin(2x+
π
4
)
取得最大值1,此時f(x)取得最大值
2
2

即函數(shù)f(x)取得最大值
2
2
時自變量x的集合為{x|x=
π
8
+kπ,k∈Z
}.
點評:本題綜合考查了向量共線定理、同角三角函數(shù)基本關系式、數(shù)量積運算、倍角公式、兩角和差的正弦公式、正弦函數(shù)的單調(diào)性有界性等基礎知識與基本技能方法,考查了計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知|
a
|=2,|
b
|=3
(1)若
a
,
b
兩向量所成角θ=
3
,求
a
b

(2)若
a
,
b
兩向量所成的角θ=
π
3
,求|
a
+2
b
|的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=(1-i)2+1+3i.
(1)若z2+az+b=1-i,求實數(shù)a,b的值;
(2)若復數(shù)(
1
z
+mi)2在復平面上對應的點在第一象限,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二項式(5x-
1
x
n展開式中各項系數(shù)之和是各項二項式系數(shù)之和的16倍;
(1)求n;
(2)求展開式中二項式系數(shù)最大的項;
(3)求展開式中所有x的有理項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個棱柱的直觀圖(圖2)和三視圖(圖1)(主視圖和俯視圖是正方形,左視圖是等腰直角三角形)如圖所示2,其中M、N分別是AB、AC的中點,G是DF上的一動點.

(1)求證:GN⊥AC
(2)當FG=GD時,證明AG∥平面FMC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知正方體AC1棱長為2,E、F、G分別是CC1、BC和CD的中點.
(1)證明:A1G⊥面EFD;
(2)求二面角E-DF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知矩陣A對應的變換是先將某平面圖形上的點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,再將所得圖形繞原點按順時針方向旋轉(zhuǎn)90°.
(1)求矩陣A及A的逆矩陣B;
(2)已知矩陣M=
33
24
,求M的特征值和特征向量;
(3)若α=
8
1
在矩陣B的作用下變換為β,求M50β(運算結(jié)果用指數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=aln(x+1)+x2
(Ⅰ)當a>0時,求函數(shù)的極大值和極小值點;
(Ⅱ)證明:對任意的正整數(shù)n,不等式ln
n2+1
n2+n
1
n2
-
1
n4
恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線y2=2px(p>0)的焦點為F,準線為l,點A(0,2),線段FA與拋物線交于點B,過B作l的垂線,垂足為M.若AM⊥MF,則p=
 

查看答案和解析>>

同步練習冊答案