【題目】如圖,在棱長為1的正方體中,動(dòng)點(diǎn)在線段上運(yùn)動(dòng),且有.
(1)若,求證:;
(2)若二面角的平面角的余弦值為,求實(shí)數(shù)的值.
【答案】(1)見證明;(2)
【解析】
(1)當(dāng)時(shí),與重合,連接,可得,再由正方體特征可證得,即可證得平面,問題得證。
(2)以為坐標(biāo)原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系.分別求出平面的一個(gè)法向量及平面的一個(gè)法向量,利用向量夾角的坐標(biāo)表示列方程即可求得,問題得解。
(1)當(dāng)時(shí),與重合,連接,
則在正方形中,.
又在正方體中底面,而平面,所以.
,所以平面,
而平面,所以,也即.
(2)依題意,以為坐標(biāo)原點(diǎn),,,分別為,,軸建立如圖所示的空間直角坐標(biāo)系.
則,,,.
,,.
設(shè)平面的一個(gè)法向量,
則,即,
取得.
設(shè)平面的一個(gè)法向量,
則,即,
取得.
所以 ,
解得或.
因?yàn)?/span>,所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)若對于任意實(shí)數(shù),恒成立,試確定的取值范圍;
(2)當(dāng)時(shí),函數(shù)在上是否存在極值?若存在,請求出這個(gè)極值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位共有職工1000人,其中男性700人,女性300人,為調(diào)查該單位職工每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集200位職工每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).
(1)根據(jù)這200個(gè)樣本數(shù)據(jù),得到職工每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:,,,,,.估計(jì)該單位職工每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)的概率;
(2)估計(jì)該單位職工每周平均體育運(yùn)動(dòng)時(shí)間的平均數(shù)和中位數(shù)(保留兩位小數(shù));
(3)在樣本數(shù)據(jù)中,有40位女職工的每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí),請完成每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表,并判斷是否有90%的把握認(rèn)為“該單位職工的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”,
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于命題的說法錯(cuò)誤的是( )
A.命題“若x2﹣3x+2=0,則x=2”的逆否命題為“若x≠2,則x2﹣3x+2≠0”
B.“a=2”是“函數(shù)f(x)=ax在區(qū)間(﹣∞,+∞)上為增函數(shù)”的充分不必要條件
C.命題“x∈R,使得x2+x+1<0”的否定是:“x∈R,均有x2+x+1≥0”
D.“若f ′()=0,則為y=f(x)的極值點(diǎn)”為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F是拋物線C:y2=2px(p>0)的焦點(diǎn),若點(diǎn)P(x0,4)在拋物線C上,且.
(1)求拋物線C的方程;
(2)動(dòng)直線l:x=my+1(mR)與拋物線C相交于A,B兩點(diǎn),問:在x軸上是否存在定點(diǎn)D(t,0)(其中t≠0),使得kAD+kBD=0,(kAD,kBD分別為直線AD,BD的斜率)若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C: ,直線l:
(Ⅰ)求直線l所過定點(diǎn)A的坐標(biāo);
(Ⅱ)求直線l被圓C所截得的弦長最短時(shí)m的值及最短弦長;
(Ⅲ)已知點(diǎn),在直線MC上(C為圓心),存在定點(diǎn)N(異于點(diǎn)M),滿足:對于圓C上任一點(diǎn)P,都有為一常數(shù),試求所有滿足條件的點(diǎn)N的坐標(biāo)及該常數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù),).
(1)若是函數(shù)的極值點(diǎn),求的值,并求的單調(diào)區(qū)間;
(2)若時(shí)都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com